

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Computer Engineering and Systems

Automatic Recognition of Arabic Handwritting using Hybrid Intelligent Networks

A Thesis submitted in partial fulfillment of the requirements of

Doctor of Philosophy in Electrical Engineering

(Computer and Systems Engineering)

by

Taraggy Mohiy Ghanim

Masters of Science (Computer Engineering and Systems Department) Faculty of Engineering, Ain Shams University, 2012

Supervised By

Prof. Hazem M. Abbas

Prof. Mahmoud I. Khalil

Date: 2020

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Computer Engineering and Systems

Automatic Recognition of Arabic Handwritting using

Hybrid Intelligent Networks

Examiners' Committee

Name and affiliation	Signature
Prof.Nawal Ahmed El-Fishawy Computer Engineering and Systems Department Faculty of Engineering, Menoufia University.	
Prof.Hoda Korashy Computer Engineering and Systems Department Faculty of Engineering, Ain Shams University.	
Prof.Hazem M. Abbas Computer Engineering and Systems Department Faculty of Engineering, Ain Shams University.	
Prof.Mahmoud I Khalil Computer Engineering and Systems Department Faculty of Engineering Ain Shams University	

Statement

This thesis is submitted as a partial fulfillment of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, Ain Shams University. The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Taraggy	Mohiy Ghanim
	Signature

Date: 2020

Researcher Data

Name: Taraggy Mohiy Ghanim Date of Birth: 19/6/1984 Place of Birth: Cairo, Egypt

Last academic degree: Master of Science

Field of specialization: Pattern Recognition, Artificial Intelligence

University issued the degree: Ain Shams University

Date of issued degree: 2012

Current job: Assistant Lecturer in Misr International University

Thesis Summary

Key words: Arabic Handwriting Recognition, Random Forest, Kullback-Leibler Divergence, Pyramid Histogram of Gradient, Support Vector Machine, Agglomerative Hierarchical clustering, Deep Convolutional Neural Network

Automatic Recognition of Arabic Handwriting is a pervasive field that has many challenging complications to solve. Such complications include big databases and complex computing activities. Chapter 1 introduces our motivation and challenges, while chapter 2 presents our related work. Our approach is a multi-stage cascading system, and is proposed in Chapter 3. It is based on applying hybrid machine learning techniques consecutively. Hybrid cascading recognition systems aim to improve the learning ability and increase recognition rates. The approach stages start with data-mining which is essentially needed to work effectively on big databases. Agglomerative hierarchical clustering technique is followed to split the database into partially inter-related clusters for the data mining process. Each test image is matched to one cluster. Cluster members are then ranked in an ascending order based on our new proposed ranking algorithm. This ranking algorithm begins with computing Pyramid Histogram of oriented Gradients (PHoG), followed by measuring divergence by the Kullback-Leibler method. Finally, the classification process is applied only on the highly ranked matching classes, to assign a class membership to each test image. Adjusting the classification process to only consider the highly ranked database classes supports classification and enhances the overall performance.

Recently, the field of computer vision and building recognition systems is being switched to the concept of deep learning to serve the field of feature engineering. Deep learning techniques demonstrated efficiency in building a better performing machine learning model. This thesis assesses the effect of six different deep Convolution Neural Networks (DCNNs) architectures in the field of offline Arabic handwriting recognition. Different neural networks' architectures and design aspects are applicable in a very challenging manner.

Chapter 4 displays our experiments. The approach is tested on the IFN-ENIT Arabic database. Enhanced classification results are achieved relative to recent proposed systems. Chapter 5 discusses the complexity analysis.

Acknowledgment

Contents

I would like to express my sincere gratitude to my supervisors for their continuous support and guidance. Besides my supervisors, I would like to thank the rest of my thesis committee. Also, I would like to thank my family: my parents, my husband and my children for supporting me spiritually throughout my life.

Taraggy Mohiy Ghanim
Computer Engineering and Systems
Faculty of Engineering
Ain Shams University
Cairo, Egypt
May 2020

Acknowledgment

Contents

C	onter	nts	xi
Li	ist of	Figures	xiv
Li	ist of	Tables	xvi
1	Intr	roduction	1
	1.1	Aim of the Research	1
	1.2	Motivation and Challenges	2
		1.2.1 Computer Vision and Automatic Handwriting Recognition	2
		1.2.2 Online Recognition versus Offline Recognition	2
		1.2.3 Arabic Language Challenges	2
		1.2.4 Effect of Hybrid Recognition Systems on Arabic Handwriting Recog-	
		nition	3
		1.2.5 Effect of Deep learning in the field of Feature Engineering	4
	1.3	Publications Resulting from Research	4
	1.4	Original Contributions of Thesis	5
	1.5	Outline of the Thesis	6
2	Lite	erature Review	7
	2.1	Concepts and Analysis	7
	2.2	Categorization based on Segmentation Approaches	8
	2.3	Features Extraction	8
	2.4	Integration of classifiers	9
	2.5	Post-Processing Support	10
	2.6	Hidden Markovian Models (HMM) based approaches	10
	2.7	Support Vector Machines (SVM) based approaches	12
	2.8	Neural Networks (NN) based approaches	13
		2.8.1 Summary of Chapter, Conclusions and Results	16
3	Pro	posed Approach	18
	3.1	Stage 1: Nearest Neighbor Set Construction stage	20
		3.1.1 Preprocessing and Segmentation	21
		3.1.2 Regional and Geometric Features Extraction	22
		3.1.3 Random Forest for Feature Selection	25
		3.1.4 Clustering	26
		3.1.4.1 Agglomerative Hierarchical Clustering	
	3.2	Stage 2: Ranking Stage (PHoG and KL-divergence)	

Table of Contents xiii

List of Figures

		3.2.1 Statistical Features Extraction: Pyramid Histogram of Gradients (PHoG)
		3.2.2 Divergence Measure: Kullback-Leibler (KL)
	3.3	Stage 3: Classification Stage
		3.3.1 Classification using Multi-class Support Vector Machines 35
		3.3.2 Classification using Convolutional Neural Network
		3.3.2.1 CNN Different Layers
		3.3.2.2 CNN different Architectures
		3.3.2.2.1 LeNet-5:
		3.3.2.2.2 AlexNet:
		3.3.2.2.3 VGG-16:
		3.3.2.2.4 Inception (GoogLeNet)
		3.3.2.2.5 ResNet
		3.3.2.2.6 ResNeXt
		3.3.2.2.7 DenseNet
	3.4	Summary
4	Res	ults and Discussions 47
	4.1	Database
	4.2	Matching Process Sensitivity
	4.3	The ranking stage
	4.4	The classification stage
	4.5	Comparison with similar systems
	4.6	Experiments on individual sets using SVM
	4.7	Convolution Neural Networks (CNN)
	4.8	Reasons of misclassification
5	Con	nplexity Analysis 67
	5.1	Complexity Analysis of Agglomerative Hierarchical Clustering 68
	5.2	Complexity Analysis of Pyramid of Histogram of Oriented Gradients PHoG 68
	5.3	Complexity Analysis of Support Vector Machines (SVM)
	5.4	Complexity Analysis of Convolutional Neural Network (CNN) 69
6	Con	aclusions and Future Work 71
	6.1	Conclusions
	6.2	Future Work

Bibliography 74

Table of Contents xiii

List of Figures

1.1	join to their left neighbor, (B) stand-alone character, (C) Different dots number and positions	3
3.1	The proposed system overview	19
3.2	Stage 1: (n is number of test images, m is total number of database	
	classes, L is total number of classes per cluster	21
3.3	A sample image during preprocessing	22
3.4	Universe of Discourse.	22
3.5	A sample image after computing number of holes and PAWs	23
3.6	Eccentricity, F1 and F2 are the two foci of the ellipse	23
3.7	Orientation θ of word bounding ellipse	24
3.8	Concavity features	25
3.9	Feature Importance	25
3.10	The Clustering Process	27
3.11	Stage 2: L is the cluster size, W is number of high rank classes	28
3.12	Pyramid Histogram of Gradients (F: frequency, G: oriented gradient)	29
3.13	Effect of Number of Orientation Bins on True Positive Rate (TPR)	31
3.14	Convolution Example with Stride=2	37
3.15	Max Pooling with a 2x2 Filter and Stride $= 2 \dots \dots \dots$	38
3.16	CNN Architectures	39
3.17	LeNet-5 Architectures [105]	39
3.18	AlexNet Architectures [98]	40
3.19	VGG-16 CNN architecture [16]	41
3.20	Inception Network Primary Design [17]	42
3.21	Inception Cell	42
3.22	Replacing Big Spatial Filters by Successive Smaller Ones	43
3.23	Residual Block	43
3.24	ResNet34 versus ResNet50 versus ResNeXt	45
3.25	DenseNet Block	46
4.1	Nearest Neighbor Set Selection Sensitivity	49
4.2	Different set sizes and their frequency.	49
4.3	Effect of different features on Sensitivity	50
4.4	Effect of number of training samples on sensitivity.	51
4.5	The Effect of Ranking on the Expected Success Rate	53
4.6	Sample of Clusters and Early Ranks of Correct matching Class	54
4.7	PHoG and Geometric features with SVM.	55

List of Figures xv

List of Tables

4.8	The error rates of using SVM versus KNN	57
4.9	Character Modeling in HMM	58
4.10	Effect of Nearest Neighbors Set Length on SVM Recognition Rate	61
4.11	AlexNet:Achieved accuracy and testing time versus learning rate	62
4.12	VGG-16::Achieved accuracy and testing time versus learning rate	63
4.13	GoogleNet: Achieved accuracy and testing time versus learning rate	64
4.14	Res50 Net: Achieved accuracy and testing time versus learning rate	64
4.15	ResNeXt Net: Achieved accuracy and testing time versus learning rate	65
4.16	DenseNet: Achieved accuracy and testing time versus learning rate	65
4.17	Samples of Misclassified Images	66
~ 1		70
5.1	Complexity Evaluation on IFN-ENIT Dataset	-/0