Physical and Biological Evaluation of Light Cured Versus Chemically Cured Tricalcium Silicate Cements: An in Vitro Study

Thesis

Submitted to the Faculty of Dentistry,

Ain Shams University

In Partial Fulfillment of the Requirements for the Master

Degree

in

Dental Biomaterials

By

Rana Mamdouh Sayed Ahmed

B.D.S (Ain-Shams University, 2010)
Instructor of Dental Biomaterials
Dental Biomaterials Department
Faculty of Dentistry
Ain - Shams University

Dental Biomaterials Department Faculty of Dentistry Ain-Shams University

2019

رسو الله الرحمن الرحيو

" هَالُوا سَهُمَا لَا عُلَدُ لَا عُلُو لَنَا إِلَّا مَا " هَيْمُونَا إِنْكَ أَنْكُ الْحِكَالِ هِيَا الْحَكْيِمُ

سدق الله العطيم (البقرة –32)

Supervisors

Dr. Mohamed Salah Nassif

Assistant professor of Dental Biomaterials

Dental Biomaterials Department

Faculty of Dentistry

Ain-Shams University

Dr. Mohamed Mahmoud Kandil

Lecturer of Dental Biomaterials

Dental Biomaterials Department

Faculty of Dentistry

Ain-shams University

Acknowledgement

This thesis is a dream that came true with God's grace and the kind support of many individuals to whom I would like to extend my sincere gratitude.

I would like to express my deepest thanks, sincere respect and highest appreciation to **Prof. Dr. Mohamed Salah Nassif**, Assistant professor of Dental Biomaterials, Faculty of dentistry, Ain-Shams University, for his highly appreciated guidance and endless support throughout this work. His valuable experience and honorable supervision will always be remembered with a lot of gratitude. I cannot be more proud for being his student.

I would like also to thank **Dr. Mohamed Mahmoud Kandil,** Lecturer of Dental Biomaterials, Faculty of Dentistry, Ain-shams University, for his excellent advice, invaluable stimulating guidance and help during this work. The door to his office was always open for me whenever I needed help.

My deepest thanks and appreciation to all my professors and colleagues in the Biomaterials department for always supporting and guiding me especially **Prof. Dr. Dalia Ibrahim El-Korashy** Professor and Head of Biomaterials Department for her endless support, continuous encouragement and treated us as a one family. Also I would like to thank **Dr. Ahmed El-Banna** Lecturer of Dental Biomaterials, Faculty of Dentistry, Ain-Shams University and **Reem Magdy Khallaf**, Assistant Lecturer of

Dental Biomaterials, Faculty of Dentistry, Ain-Shams University, and Lamia Mostafa, Assistant Lecturer of Dental Biomaterials, Faculty of Dentistry, Ain-Shams University.

Dedicated to

Soul of My Dad

Who is missing by his body but always present by his soul, to whom I owe everything, I am grateful for being him my life mentor, my friend, my hero and he simply being there every time I needed to him.

My Mom

Who supported and inspired me in every possible way and the one who raised me to be a hard worker and always encouraged me. I hope I had made you proud.

My Brothers

My support system and backbone.

My Husband

My life partner and soulmate who is always there for me.

My Beloved Daughters

My source of joy, happiness and hope.

Last but not least,

My Biomaterials family

With whom I shared a lot of beautiful memories.

List of contents

Lis	t of Tables		III
Lis	t of Figure	S	IV
Lis	t of abbrev	iations	VIII
Int	roduction		1
Rev	view of lite	rature	4
1.	History of	Calcium Silicates	4
	1.1.	Portland cement	4
	1.2.	Mineral Trioxide Aggregate (MTA)	4
2.	Properties	of MTA	5
3.	Modificat	ions in MTA	7
	3.1.	Modifications to improve the handling characteristics.	7
	3.2.	Modifications to reduce the setting time	8
	3.3.	Alternative radiopacifiers	9
	3.4.	Modifications to improve the flow	10
4.	New Trica	alcium silicate based cements	10
5.	Biodentin	e TM (Septodont, Saint-Maur-Fosses Codex, France)	11
	5.1.	Composition of Biodentine TM	11
	5.2.	Setting reaction of Biodentine TM	13
	5.3.	Indications of Biodentine TM	14
.6	Theracal I	Lc TM (Bisco Inc., Schaumburg, IL, USA)	14
	.6.1.	Composition of Theracal Lc TM	15
	6.2.	Setting reaction of Theracal Lc TM	16
	.6.3	Indications of Theracal Lc TM	17
7.	Vital pulp	therapy	18

8. Evaluation of Biodentine [™] and Theracal Lc [™] as pulp capping ma			g materials
			21
	8.1.	Calcium ion release	22
	8.2.	pH analysis	23
	.8.3	Bioactivity	25
	8.4.	Water sorption and Solubility	30
Aiı	m of the stu	ıdy	33
Ma	aterials and	l methods	34
Re	sults		49
Dis	scussion		77
Summery and conclusion		91	
	References		

List of Tables

Table 1: List of materials used, brand names, compositions and lot numbers.
35
Table 2: Factorial design table showing the different groups
Table 3: Mean ± standard deviation (SD) of solubility (μg/mm ³) for different
storage times and types of materials
Table 4: Mean ± standard deviation (SD) of water sorption (μg/mm³) for different storage times and types of materials
Table 5: Mean ± standard deviation (SD) of calcium ion release (ppm) for
different storage times and types of materials55
Table 6: Mean ± standard deviation (SD) of cumulative calcium ion release (ppm) for different storage times and types of materials
Table 7: Mean ± standard deviation (SD) of (pH) value for different storage
times and types of materials61

List of Figures

Figure 1: (a) A split teflon mould and Biodentine TM disc after hardening (b)
Biodentine TM condensed into the mould (c) Theracal Lc TM condensed
into the mould
Figure 2: Specimen placed on the analytical balance
Figure 3: The digital caliber measuring the dimantions of the specimen 40
Figure 4: Polypropylene tube containing deionized water used for immersion of the material's discs
Figure 5: Specimens in the desiccator to measure Final mass m3
Figure 6 : Polypropylene tube containing deionized water for immersion of the samples to test calcium release and pH
Figure 7: Digital pH meter
Figure 8: Ion chromatography
Figure 9: Hank's balanced salt solution (HBSS)
Figure 10: Polypropylene tube containing 10 ml HBSS used for immersion of the discs
Figure 11: ESEM with attached EDX
Figure 12: Bar chart showing average solubility (μg/mm ³) for different storage times within each type of material

Figure 13: Bar chart showing average solubility (µg/mm ³) for different types
of materials within each Storage time
Figure 14: Line chart showing average solubility (μg/mm³) in different storage times for different types of materials
storage times for different types of materials
Figure 15: Bar chart showing average water sorption (μg/mm ³) for different
storage times within each type of material53
Figure 16: Bar chart showing average water sorption (μg/mm ³) for different
types of materials within each Storage time
Figure 17: Line chart showing average water sorption (μg/mm3) in different
storage times for different types of materials
Figure 18: Bar chart showing average calcium ion release (ppm) for different storage times within each type of material
storage times within each type of material
Figure 19: Bar chart showing average calcium ion release (ppm) for different
types of materials within each Storage time
Figure 20: Line chart showing average calcium ion release (ppm) in different storage times for different types of materials
Figure 21: Bar chart showing average cumulative calcium ion release (ppm)
for different storage times within each type of material
Figure 22: Bar chart showing average cumulative calcium ion release (ppm) for different types of materials within each Storage time

Figure 23 : Line chart showing average cumulative calcium ion release (ppm) in different storage times for different types of materials
Figure 24: Bar chart showing average (pH) value for different storage times
within each type of material62
Figure 25: Bar chart showing average (pH) value for different types of materials within each Storage time
Figure 26: Line chart showing average (pH) value in different storage times for both types of materials
Figure 27: ESEM photomicrographs under different magnifications 500 x and 3000 x showing the different phases and structure of the set Biodentine TM
Figure 28: ESEM photomicrograph at 4000 x magnification showing the Ca ₃ Si ₅ and ZrO ₂ crystals with their corresponding EDX analysis 65
Figure 29: ESEM photomicrograph at 12000 x magnification showing the Ca(OH) ₂ needle shaped crystals with their corresponding EDX analysis
Figure 30: ESEM photomicrograph at 12000 x magnification showing CaCO ₃ crystals and calcium silicate hydrate areas with their corresponding EDX analysis. 66
Figure 31: ESEM photomicrographs under different magnifications 500 x and
3000 x showing the different phases and structure of the set Theracal Lc TM 67

Figure	32: ESEM photomicrograph at 16000 x magnification showing the varied sized tricalcium silicate particles with their corresponding EDX analysis
Figure	33: ESEM photomicrograph at 12000 x magnification showing the radiopacifying particles barium zirconate with its corresponding EDX analysis
Figure	34: ESEM photomicrographs at different magnifications showing the surface deposits over Biodentine disc stored in HBSS for different time intervals with the corresponding EDX analysis
Figure	35: ESEM photomicrographs at different magnifications showing the surface deposits over Theracal Lc stored in HBSS for different time intervals with the corresponding EDX analysis

List of abbreviations

Abbreviation	Explanation
HCSCs	Hydraulic Calcium Silicate Cements
MTA	Mineral Trioxide Aggregate
OPC	Ordinary Portland Cement
CaO	Calcium Oxide
SiO2	Silicon dioxide
Al2O3	Alumina
ESEM	Environmental Scanning Electron Microscopy
EDX	Energy dispersive X ray
XRD	X-ray Diffraction
UDMA	Urethene Dimethaacrylate

Bis GMA	Bisphenol A-glycidyl methacrylate
TriEDMA /TEGDMA	Triethylene glycol dimethacrylate
НЕМА	2- Hydroxyethyl methacrylate
PEGDMA	Polyethylene glycol dimethacrylate
DSPP	Dentine sialophosphoprotein
HDPCs	Human dental pulp cells
a-MEM	a-minimum essential medium
DMP-1	dentine matrix protein-1
CSH	Calcium Silicate Hydrate
рН	Power pf Hydrogen
ICP-OES	Inductively coupled plasma optical emission spectrometry