

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Phytochemical and Biological Studies on Spondias mangifera (L.), Family Anacardiaceae

A thesis submitted to

Department of Pharmacognosy

Faculty of Pharmacy

Ain Shams University

In Partial Fulfilment of the Requirements

for the Degree of Master in Pharmaceutical Sciences

(Pharmacognosy)

By

Salma Sameh Said Ali

Bachelor of Pharmacy

Faculty of Pharmacy, Ain Shams University, 2014

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbasia, Cairo, Egypt

2020

Under the Supervision of

Abdel Nasser B. Singab, Ph.D.

Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University

Vice President for Postgraduate and Research Affairs

Ain Shams University

Chairman of Center for Drug Discovery, Research and Development

Ain Shams University

Rola Milad Labib, Ph.D.

Associate Professor of Pharmacognosy

Faculty of Pharmacy

Ain Shams University

Eman Kamal Al-Sayed, Ph.D.

Associate Professor of Pharmacognosy

Faculty of Pharmacy

Ain Shams University

Department of Pharmacognosy

Faculty of Pharmacy

Ain Shams University

Abbasia, Cairo, Egypt

2020

Acknowledgement

First of all, I would like to extend due praise and thanks to **ALLAH**, the merciful and the passionate, the source of all knowledge, for giving me the strength and encouragement especially during all the challenging moments in completing this thesis and during this entire journey.

I am profoundly grateful to many people who helped me in this work, it is a pleasant aspect that I have now the opportunity to express my gratitude for all of them.

I would like to express my heartfelt gratitude and sincere thank to my respected thesis advisors;

Professor Abdel Nasser B. Singab, Professor of Pharmacognosy, Vice President for Postgraduate and Research Affairs, Ain Shams University. I am profoundly and deeply grateful to him for helping me to get started on the path of this degree by his expert and valuable guidance. His door was always open whenever I had a question about my research or writing. I would like to express my deepest and sincere gratitude to him for his continuous support, encouragement and motivation. Thanks for his valuable comments, constructive suggestions during the experimental investigations, structural elucidation and correction to the thesis and the manuscripts. Thanks for his efforts and precious time. Thanks for steering me in the right direction whenever I needed help with his precious advices. I would like to express my profound gratitude to Professor Singab: the chairman of the Center for Drug Discovery, Research and Development, Faculty of Pharmacy, Ain Shams University for establishing the center of drug discovery and supplying it with all the modern equipments required for carrying out the research work viz. NMR and LC/MS at the Center for Drug Discovery, Research and Development.

I would also like to express my profound and heartfelt gratitude to **Dr. Rola Milad**Labib, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, who supervised me in this work. My deepest thanks for her kind and passionate help and support during this journey. Thanks for her patience during listening to the little problems and roadblocks that unavoidably crop up in the course of performing research. Thanks for her valuable advices and guidance that helped me in all the time of research and writing of this thesis. My sincere thanks for her constructive suggestions and valuable criticism which

helped me in improving this work during the experimental investigations as well as structural elucidation, biological testing, writing and revising the thesis and the manuscripts.

I would like also to express my deepest and profound gratitude to **Dr. Eman Kamal** Al-Sayed, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, who helped me to get started on the path of this degree by suggesting the research point. My sincere thanks for her continuous help, support and encouragement. Thanks for her precious time spent with me in the research lab for guiding me and for transferring her precious and valuable knowledge to me. Thanks for her valuable advice, helpful and constructive suggestions, constant guidance and encouragement in experimental study, structural elucidation, experimental design of the antilipidemic model, statistical analysis, writing and revising the thesis and the manuscripts.

I would like also to express my gratitude to **Dr. Amany Sleem**, Pharmacology Department, National Research Center, for helping in carrying out the in vivo biological testing.

I would like to express my profound gratitude to members of Pharmacognosy Department; my **Professors** and **staff**, thanks for their continuous support, care, education and useful tips.

Many thanks to my **colleagues** and **friends**. Thanks for their encouragement and help all the time and the warm environment they provide.

Finally, I must express my very profound gratitude to my parents and to my sweet sister for providing me with support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Salma Sameh

Cairo, 2020

List of Contents

	Page
List of Figures	iii
List of Tables	vi
List of Abbreviations	vii
Introduction	1
Review of Literature	3
I- Traditional uses of genus Spondias	3
II- Pharmacological activities of genus Spondias	5
III- Phytoconstituents of genus Spondias	19
Taxonomy	31
Materials, Apparatus and Methods	37
1. Materials	37
2. Apparatus	43
3. Methods	44
Chapter 1: Biological investigation of the methanol soluble extract of Spondias	
mangifera leaves, its subfractions along with the essential oils of three organs of	
Spondias mangifera, (family Anacardiaceae)	53
1. In vitro study of the methanol soluble extract of Spondias mangifera leaves	53
1.1. Cytotoxic activity	53
1.2. Antidiabetic activity.	57
2. In vivo study of the methanol soluble extract of Spondias mangifera leaves	61
2.1. Antidiabetic, antilipidemic and anti-obesity activities of the DCM fraction of	
Spondias mangifera	61
3. Biological investigation of the essential oils obtained by hydrodistillation of	
three organs of Spondias mangifera	74
Chapter 2: Phytochemical study of the methanol soluble extract of Spondias	
mangifera leaves, (family Anacardiaceae)	80
2.1. Experimental	80
2.1.1. Phytochemical screening of <i>Spondias mangifera</i> leaves	80

2.1.2. Phytochemical study of <i>Spondias mangifera</i> leaves	80
2.1.3. Fractionation of the DCM fraction of the methanol soluble extract of	
Spondias mangifera leaves	80
2.2. Results and discussion.	84
2.2.1. Phytochemical screening of Spondias mangifera leaves	84
2.2.2. Phytochemical study of Spondias mangifera leaves	84
2.2.2.1. Compounds isolated from the DCM fraction of the methanol soluble leaf	
extract of Spondias mangifera	85
2.2.2.1.1. Compounds isolated from fraction B	85
2.2.2.1.1.1. Compound (1): Hydroxycitric acid lactone 1,6-dimethyl ester	87
2.2.2.1.1.2. Compound (2): Hydroxycitric acid lactone 1-methyl ester (2a) &	
Hydroxycitric acid lactone (2b)	95
2.2.2.1.1.3. Compound (3): Scopoletin	102
2.2.2.1.1.4. Compound (4): Hydroxycitric acid 1,5,6-trimethyl ester (4a) &	
Hydroxycitric acid lactone 1,6-dimethyl ester (4b)	107
2.2.2.1.2. Compounds isolated from fraction L	116
2.2.2.1.2.1. Compound (5): 5- <i>O</i> -Feruloyl quinic acid	117
2.2.2.1.3. Compounds isolated from fraction Z6	123
2.2.2.1.3.1. Compound (6): Salicylic acid	124
2.2.2.1.3.2. Compound (7): Cinnamic acid	129
Chapter 3: Essential oils of leaf, flower and fruit pericarp of <i>Spondias mangifera</i>	134
3.1. Results and discussion	134
3.1.1. GC/MS analysis of the essential oils.	140
General summary	144
Conclusion and recommendations.	148
Achievements	151
References	155
Arabic summary	

List of Figures

Figure		Page
1.	Pseudotannins isolated from genus Spondias	19
2.	Flavonoids isolated from genus Spondias	20
3.	Phenolic acid derivatives isolated from genus Spondias	22
4.	Sterols and triterpenes isolated from genus Spondias	24
5.	Saponin isolated from genus Spondias	25
6.	Components identified from essential oils prepared from genus Spondias	27
7.	Amino acids isolated from genus Spondias	28
8.	Organic and fatty acids isolated from genus Spondias	29
9.	Sugars isolated from genus Spondias	30
10.	Photograph of <i>Spondias mangifera</i> tree ($X=0.007$) and leaf ($X=0.4$) cultivated in	
	the Zoo Garden, Giza, Egypt	35
11.	Photograph of Spondias mangifera flowers (X= 1)	36
12.	Photograph of Spondias mangifera fruit (X=1) cultivated in the Zoo Garden, Giza,	
	Egypt	36
13.	Cytotoxic activity of compound (1) on HepG2 cell line and MCF-7 cell line	56
14.	Alpha-amylase inhibitory activity of the methanol extract and its five main fractions	59
15.	Alpha-amylase inhibitory activity of compound (1)	60
16.	Effect of long term administration of DCM fraction on glucose level in	
	hypercholesterolemic rats	62
17.	Effect of long term administration of DCM fraction on total cholesterol level in	
	hypercholesterolemic rats	65
18.	Effect of chronic administration of DCM fraction on triglycerides level in	
	hypercholesterolemic rats	66
19.	Effect of the long term treatment with DCM fraction on HDL level in	1
	hypercholesterolemic rats	67
20.	Effect of chronic administration of DCM fraction on LDL level in	
	hypercholesterolemic rats	68
21.	Effect of chronic administration of DCM fraction on body weight of	f
	hypercholesterolemic rats	69

22.	Scheme showing the chromatographic separation of DCM fraction of <i>Spondias</i>
	mangifera methanol leaves extract
23.	¹ H NMR spectrum of compound (1) in CDCl ₃ -d ₁
24.	APT spectrum of compound (1) in $CDCl_3$ - d_1
25.	HSQC spectrum of compound (1) in CDCl ₃ -d ₁
26.	HMBC spectrum of compound (1) in CDCl ₃ - d_1
27.	¹ H- ¹ H COSY spectrum of compound (1) in CDCl ₃ - <i>d</i> ₁
28.	ESI-MS spectrum of compound (1)
29.	¹ H NMR spectrum of compound (2) in DMSO- <i>d</i> ₆
30.	APT spectrum of compound (2) in DMSO-d ₆
31.	HMBC spectrum of compound (2) in DMSO-d ₆
32.	ESI-MS spectrum of compound (2)
33.	¹ H NMR spectrum of compound (3) in CD ₃ OD- <i>d</i> ₄
34.	¹ H- ¹ H COSY spectrum of compound (3) in CD ₃ OD-d ₄
35.	ESI-MS spectrum of compound (3) (positive ion mode)
36.	ESI-MS spectrum of compound (3) (negative ion mode)
37.	¹ H NMR spectrum of compound (4) in DMSO- <i>d</i> ₆
38.	APT spectrum of compound (4) in DMSO-d ₆
39.	HSQC spectrum of compound (4) in DMSO-d ₆
40.	HMBC spectrum of compound (4) in DMSO- d_6
41.	¹ H- ¹ H COSY spectrum of compound (4) in DMSO- <i>d</i> ₆
42.	ESI-MS spectrum of compound (4a)
43.	ESI-MS spectrum of compound (4b)
44.	¹ H NMR spectrum of compound (5) in DMSO- <i>d</i> ₆
45.	APT spectrum of compound (5) in DMSO-d ₆
46.	¹ H- ¹ H COSY spectrum of compound (5) in DMSO- <i>d</i> ₆
47.	UV spectrum of compound (5)
48.	ESI-MS spectrum of compound (5)
49.	¹ H NMR spectrum of compound (6) in DMSO- <i>d</i> ₆
50.	APT spectrum of compound (6) in DMSO-d ₆
51.	UV spectrum of compound (6)
52.	¹ H NMR spectrum of compound (7) in DMSO- <i>d</i> ₆
53.	APT spectrum of compound (7) in DMSO-d ₆

List of Figures

54.	UV spectrum of compound (7)	133
55.	Gas chromatogram of essential oils prepared from Spondias mangifera leaves	140
56.	Gas chromatogram of essential oils prepared from Spondias mangifera flowers	140
57.	Gas chromatogram of essential oils prepared from Spondias mangifera pericarps	141
58.	Chemical structure of the identified components of the essential oils obtained from	
	the leaves, flowers and fruits pericarps of S. mangifera	142

List of Tables

Table		Page
1.	Cytotoxic activity of Spondias mangifera methanol leaves extract and its five	
	main fractions on HepG2 cell line	54
2.	Cytotoxic activity of compound (1)	55
3.	Alpha-amylase inhibitory activity of Spondias mangifera methanol leaves extract	58
	and its five main fractions	
4.	Alpha-amylase inhibitory activity of compound (1)	60
5.	Effect of long term administration of DCM fraction of Spondias mangifera leaves	
	on lipid profile and blood glucose in hypercholesterolemic male $Albino$ rats ($n =$	
	6)	63
6.	Effect of long term administration of DCM fraction of Spondias mangifera leaves	
	on body weight of male Albino rats	70
7.	Antimicrobial activity of essential oils of three organs of Spondias mangifera.	75
8.	Fractionation of the DCM fraction of Spondias mangifera	82
9.	Results of phytochemical screening of Spondias mangifera leaves	84
10.	Fractionation of fraction B.	85
11.	Fractionation of band 2 from subfraction 14	86
12.	Fractionation of band 3 from subfraction 14	86
13.	¹ H NMR and APT signals (δ ppm) of compound (1) in chloroform- d_I	88
14.	¹ H NMR and APT signals (δ ppm) of compound (2) in DMSO- d_6	97
15.	¹ H NMR of compound (3) in CD ₃ OD- <i>d</i> ₄	103
16.	¹ H NMR and APT signals (δ ppm) of compound (4) in DMSO- <i>d</i> ₆	109
17.	Fractination of fraction L	116
18.	¹ H NMR and APT signals (δ ppm) of compound (5) in DMSO- <i>d</i> ₆	118
19.	Fractionation of fraction Z6	123
20.	¹ H NMR and APT signals (δ ppm) of compound (6) in DMSO- <i>d</i> ₆	125
21.	¹ H NMR and APT signals (δ ppm) of compound (7) in DMSO- <i>d</i> ₆	130
22.	Chemical composition of essential oils from leaves, flowers and fruits pericarps	
	of Spondias mangifera	136
23.	Percentage of the volatile components of <i>Spondias mangifera</i> essential oils	139