

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

"The Effect of Auto-polymerizing, Photo-polymerizing and Dual-polymerizing Self-etching Adhesive Systems on Shear Bond Strength and Nano-leakage of Two Direct Resin Composite Core materials: An in-Vitro Study"

A thesis submitted to the Department of Operative Dentistry,
Faculty of Dentistry, Ain Shams University
in partial fulfillment of the requirements for the Academic Master's
Degree in Operative Dentistry

By

Samar Saleh Mahmoud Abdulkader

B.D.S. Ain Shams University 2012Instructor of Operative DentistryFaculty of Dentistry, Ain Shams University

Supervisors

Prof. Dr. Mokhtar Nagi Ibrahim

Professor at Operative Dentistry Department Faculty of Dentistry, Ain Shams University

Prof. Dr. Omaima Hassan Ghallab

professor at Operative Dentistry Department Faculty of Dentistry, Ain Shams University

Dr. Mohammed Nasser Mohammed Anwar

Lecturer at Operative Dentistry Department Faculty of Dentistry, Ain Shams University **Professor Dr. Mokhtar Nagi Ibrahim** .. the god father of the Operative department, you taught us knowledge, compassion and courtesy.

Professor Dr. Omaima Hassan Ghallab .. A heartfelt thanks for your much-appreciated support, time, help and guide. You veil a sea of knowledge with your humbleness and kindness. I'm always sincerely grateful to you.

Dr. Mohammed Nasser Mohammed Anwar .. It was a pleasure and an honor to be supervised by you, you added a distinguished value to this thesis and a great knowledge for me and your devoted students.

My mother.. for sure you have impact my life to what I have become now, thanks to your support and making life more easier, till we meet again..

My husband .. the hidden soldier, my dearest blessing, the one who keep pushing me to do better. Thanks for believing in me and making me believe in that too.

My son .. you are the sunshine to me and your father

My colleagues in operative department .. your success has always been my motivation to continue and present the best that I can. Thank you for all the support and help.

LIST OF CONTENTS

	Page
List of tables	ii
List of figures	iii
Introduction	5
Review of literature	8
Adhesion to dental tissue	8
Revolution of self-etch adhesives	9
Self-etch adhesives curing modes	14
 Resin based composite restorations and innovation 	
of the bulk-fill concept for core restoration	19
Dual cure core composites	23
Adhesive/composite Incompatibility	26
 Bond strength and nano-leakage tests in assessing 	
restoration stability and integrity	31
Aim of the study	35
Materials and Methods	36
Results	55
Discussion	74
Summary and Conclusions	87
References	89
Arabic Summary	101

LIST OF TABLES

No.	Title	Page no.
1	Materials, mode of curing, composition and manufacture	36,37
2	Levels of investigation	39
3	Experimental design for shear bond strength	39
4	Experimental design for nano-leakage	40
5	Descriptive statistics for shear bond strength (Mpa) for different types of adhesives and core materials	55
6	Effect of different variables and their interactions on shear bond strength (Mpa)	56
7	Mean ± standard deviation (SD) of shear bond strength (Mpa) for different types of adhesives	57
8	Mean ± standard deviation (SD) of shear bond strength (Mpa) for different types of core materials	58
9	Mean ± standard deviation (SD) of shear bond strength (Mpa) for different types of adhesives and core materials	60
10	Number of specimens according to fracture mode for all experimental groups	61
11	Descriptive statistics for log nano-leakage for different types of adhesives and core materials	65
12	Effect of different variables and their interactions on log nano- leakage	66
13	Mean ± standard deviation (SD) of log nanoleakage for different types of adhesives	66
14	Mean ± standard deviation (SD) of log nanoleakage for different types of core materials	67
15	Mean ± standard deviation (SD) of log nanoleakage for different types of adhesives and core materials	69
16	Correlation between shear bond strength and nano-leakage	73

LIST OF FIGURES

No.	Title	Page
		no.
A	diagram showing the 3D-SR monomer structure	18
1	Prepared flat dentin surface	41
2	The adhesives used in study (a): Tokuyama Universal Bond, (b): Futura bond M+, (c): Futura bond DC	42
3	Dental adhesive application over dentin surface	43
4	Poly-ethelene tube placement over the flat dentin specimen	44
5	Adhesive curing with light curing unit	44
6	(a) composite packing using ball burnisher, (b) gentle finger pressing using a glass slide, (c) light curing over the polyester strip	44,45
7	Universal testing machine for shear bond testing	46
8	Uni-bevel Chesil applied close to the interface	46
9	Stereomicroscope	47
10	(a) Specimen before testing, (b) the cut slab 1 mm	49
11	(a) isomet machine used to cut the specimen in labio-lingual direction(b) fixed specimen, Red arrow pointing to the fixed specimen	49,50
12	Slab after two layers of nail varnish	50
13	Illustrating the preparation steps of ammonical silver nitrate	51
14	Metallic stub	52
15	setting scale for the SEM image, green arrow shows the known total distance in relation to the power of magnification	53
16	Measuring a specified area of nano-leakage along the interface, the total length of nano-leakage will be summed up	54
17	Bar chart showing average shear bond strength (Mpa) for different types of adhesives	57
18	Bar chart showing average shear bond strength (Mpa) for different types of core materials	58
19 a	Bar chart showing average shear bond strength (Mpa) for different types of adhesives and core materials	60

19 b	Bar chart showing average shear bond strength (Mpa) for different types	61
	of adhesives and core materials	
20	stereomicroscopic picture representing specimens from group A ₁ B ₁	62
21	stereomicroscopic picture representing specimens from group A ₂ B ₁	62
22	stereomicroscopic picture representing specimens from group A ₃ B ₁	63
23	stereomicroscopic picture representing specimens from group A ₁ B ₂	63
24	stereomicroscopic picture representing specimens from group A ₂ B ₂	64
25	stereomicroscopic picture representing specimens from group A ₃ B ₂	64
26	Bar chart showing average log nanoleakage for different types of adhesives	67
27	Bar chart showing average log nanoleakage for different types of core materials	68
28	Bar chart showing average log nanoleakage for different types of adhesives and core materials (A)	70
29	Bar chart showing average log nanoleakage for different types of adhesives and core materials (B)	70
30	Scanning electron microphotograph for Estecore universal with Tokuyama universal adhesive	71
31	Scanning electron microphotograph for Estecore universal with Futura bond M+	71
32	Scanning electron microphotograph for Estecore universal with Futura bond DC	71
33	Scanning electron microphotograph for Xtra fil with Tokuyama universal bond	71
34	Scanning electron microphotograph for Xtra fil with Futura bond M+	72
35	Scanning electron microphotograph for Xtra fil with Futura bond DC	72
36	Scatter plot showing the correlation between shear bond strength and nanoleakage	73

Dental adhesive systems have witnessed a great evolution in their chemical formulation and their action. Contemporary adhesives are principally categorized according to the adopted adhesion strategy either to etch and rinse or self-etch adhesive (SEA) systems.¹ Dental adhesive are marketed in different application forms, they could be applied in three steps, two steps, single step, depending on how the three pillar steps; etching, priming and bonding are applied to the tooth substrate either in a separate step or in simplified combined step. ² The simplicity of all in one SEA came on the expense of their high water affinity, even after polymerization making them more hydrophilic.

Dentin bonding adhesive system can be light-polymerized, auto-polymerized, or dual-polymerized.³ Studies have suggested the application of adhesive systems that are capable of reaching complete polymerization by light exposure prior to placement of the restoration.⁴ ⁵ However, sometimes tooth preparation may result in areas that cannot be effectively reached by the light from the light-polymerizing unit. which may impair the bond strength at these incompletely polymerized areas and compromise the longevity of adhesive restorations.⁶ Thus, dual-polymerizing or auto-polymerizing adhesive systems are indicated for direct and indirect restorations to ensure proper polymerization of the adhesive resin in such areas.

Core build-up material should provide resistance and retention means to the coronal restoration. It has to possess sufficient strength to resist the oral cavity occlusal forces and become an integral part of the tooth structure to bear loading forces especially if it won't be covered with a coronal restoration. Resin composite core buildup materials have been introduced for restoring teeth with compromised resistance and retention form prior to crown preparation.

A new class of resin composite material was lately introduced in an attempt to simplify the restoration technique, be less technique sensitive systems and save time, yet give a stable and durable performance. Bulk-fil composite concept was innovated in a couple of decades ago claiming that composite can be inserted and cured in a bulk layer that can reach 4 mm. or even 5 mm. this reconcile with low compliance patients. It also shortened chair time in big cavities build ups and core restorations for endodontically treated teeth, moreover it was claimed by the manufactures that bulk-fill composite can reduce polymerization shrinkage stresses and cusp deflection.⁸

Insuring high degree of conversion and proper polymerization of the deepest layer remained the most challenging issue, especially where the curing light is severely attenuated by resin shade and the distance between light curing device and tooth structure. P.10 Light cured core composite offers advantages of improved storage time and maintained stability, commanded setting time, higher degree of conversion. However, Dual cured core materials allow dentists to build-up composite in single thick layer, because self-curing component may assure proper polymerization. They offer extended time of the pre-gel phase and slow setting of the self-cured component. This have been stated to decrease the polymerization shrinkage and subsequently relieving the shrinkage stresses through partial flow of the polymerizing material in posterior composite restorations. Although this redeeming feature, it had not been sufficiently proved in recent research.

With the large variety of bonding systems formula; Raised problems like adhesives permeability and an adverse reaction between adhesive/composite interface have showed up. Such incompatibility between the adhesive and composite could lead eventually to failure and microleakage. ¹² This has been demonstrated mainly with simplified adhesives that