RECENT FERTILIZATION TECHNIQUE FOR SOYBEAN PLANTS UNDER DROUGHT CONDITIONS

By

HOSSAM HUSSEIN MOHAMED HUSSEIN

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2008 M.Sc. Agric. Sc. (Crop Production), Ain Shams University, 2014

A thesis Submitted in Partial Fulfillment
Of
The Requirements for the Degree of

in
Agricultural Science
(Crop Production)

Department of Agronomy
Faculty of Agriculture
Ain Shams University

Approval Sheet

RECENT FERTILIZATION TECHNIQUE FOR SOYBEAN PLANTS UNDER DROUGHT CONDITIONS

By

HOSSAM HUSSEIN MOHAMED HUSSEIN

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2008 M.Sc. Agric. Sc. (Crop Production), Ain Shams University, 2014

This thesis for Ph.D. degree has been approved by: Dr. Fawzy sayed Abd El-Samyaa Prof. Emeritus of Agronomy, Faculty of Agriculture, Fayoum University Dr. Olfat Hassan El-Bagory Prof. Emeritus of Agronomy, Faculty of Agriculture, Ain Shams University Dr. Mohamed Ahmed Abd El-Hady Assistant Prof. of Agronomy, Faculty of Agriculture, Ain Shams University (Supervisor) Dr. Ramadan Thabit Abd Rabou Prof. of Emeritus Agronomy, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Date of examination: / /2019

RECENT FERTILIZATION TECHNIQUE FOR SOYBEAN PLANTS UNDER DROUGHT CONDITIONS

By

HOSSAM HUSSEIN MOHAMED HUSSEIN

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2008 M.Sc. Agric. Sc. (Crop Production), Ain Shams University, 2014

Under the supervision of:

Dr. Ramadan Thabit Abd Rabou

Prof. Emeritus of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Ahmed Abd El-Hady

Assistant Prof. of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University

ABSTRACT

Hossam Hussein Mohamed Hussein, Recent Fertilization Technique for Soybean plants under Drought Conditions. Unpublished Ph.D. Thesis. Agronomy Department, Faculty of Agriculture, Ain Shams University, 2019.

During summer seasons of 2015 and 2017, two field experiments were conducted at the Research and Experimental Station (30°19′ N, 31°16′ E), Faculty of Agriculture, Ain Shams University at Shalakan, Kalubia Governorate, Egypt, to investigate the effects of combinations between hydroxyl apatite nanoparticles (0, 3, and 6 kg/fad) and calcium carbonate nanoparticles (0, 500g/fad) as Nano-fertilizers under two irrigation intervals levels, (irrigation every 2 or 3 weeks whereas irrigation every 2 weeks as a recommended practice) on growth, yield components and quality of soybean plants.

Irrigation intervals had statistically significant effect on growth traits (plant height (cm), number of branches per plant, number of leaves per plant, leaf area index, number of pods per plant, number of root nodules per plant, root dry weight per plant, stem dry weight per plant, leaves dry weight per plant and pods dry weight per plant) and yield attributes (plant height at harvest (cm), number of branches /plant, number of seeds /pod, pod yield /feddan, 100-seed weight, seed yield /feddan and biological yield /feddan). These results were fairly true in the two studied seasons 2015, 2017 and combined result.

Growth parameters i.e. plant height, numbers of branches per plant, numbers of leaves per plant, leaf area index, number of nodules per plant and number of pods per plant and yield attributes (plant height at harvest (cm), number of branches /plant, number of seeds /pod, pod yield /feddan, hulling%, 100-seed weight, seed yield /feddan and biological yield /feddan) of soybean plants which treated with 500 g/fed surpassed untreated plants in the two studied seasons 2015, 2017 and combined.

Soybean plants treated with 6 kg hydroxyl apatite nanoparticles per feddan out-numbered other plants in its numbers of leaves per plant, leaf area index, number of root nodules per plant, number of pods per plant plant height at harvest (cm), number of branches /plant, number of seeds /pod, pod yield /feddan, hulling%, 100-seed weight, seed yield /feddan and biological yield /feddan in the two growing seasons 2015, 2017 and combined data.

Results showed that normal irrigation x 500g/fed calcium carbonate nanoparticles x 6kg/fed hydroxyl apatite nanoparticles was the effective combination for producing the highest values of plant height (cm), number of branches per plant, number of leaves per plant, leaf area index, number of pods per plant, number of root nodules per plant, root dry weight per plant (g), stem dry weight per plant (g), leaves dry weight per plant (g), pods dry weight per plant (g), plant height at harvest (cm), number of branches /plant, number of seeds /pod, pod yield /feddan, hulling%, 100-seed weight, seed yield /feddan and biological yield /feddan.

There weren't significant results between plants treated with Nano-mineral fertilizers (calcium carbonate nanoparticles and hydroxyl apatite nanoparticles) under irrigation every 3 week and plants untreated but irrigated every 2 week in all growth traits and yield components which reflect appositive result of this chemical substance in mitigation harmful effect of water shortage in season 2015, 2017 and combined data.

Key words: Soybean, Nano fertilizers, Calcium Carbonate Nanoparticles, Hydroxyl apatite nanoparticles, irrigation intervals.

ACKNOWLEDGEMENT

The writer wishes to express his deep gratitude and sincere appreciation to **Prof. Dr. Neamat Abd El-Aziz Noure El-Deen**, Prof. Emeritus of Agron. Dept., Fac. of Agric., Ain Shams Univ. for her supervision, valuable guidance, continuous encouragement, sincere efforts and helpful suggestion during the progress of this work.

The writer is deeply indebted to Dr. **Prof. Dr. Ramadan Thabit Abd Rabou** Prof. Emeritus. of Agronomy, Department of Agronomy, Faculty of Agriculture, Ain Shams University for his supervision, faithful assistance, encouragement and valuable advice in the execution of the work and in the preparation and revision of the manuscript and thesis.

Thanks to **Dr. Mohamed Ahmed Abd El-Hady,** Assistant Professor, department of Agronomy, Faculty of Agriculture, Ain Shams University for his supervision and encouragement in the preparation and revision of the manuscript and thesis.

Thanks to Prof. **Dr. M. F. Hamed** and Prof. **Dr. H. S. S. Saudy** for their help in the begging of this work.

My great and deep gratitude and sincere appreciation to **Dr. Ashraf Bakry** Professor, department of Genetics, Faculty of Agriculture, Ain Shams for his help, encourage and support this work.

My great and deep gratitude and sincere appreciation to my father late **Dr. Hussein Mohamed Hussein**, Assistant Prof. in Dept. of poultry,A.R.C for his encouragement and valuable advice in the execution of this work, his love and life. My God forgive to him and mercy on him and led him to paradise without the agony with the prophets and saints and martyrs.

Thanks are also extended to all Faculty members of Agron. Dept., Fac. of Agric., Ain Shams Univ. for their interest and kind help during the course of this work.

Thanks also to **Dr. Mohamed Mahmoud Abo El-Ftoh** and **Dr. Mohamed Kalf** for their help and support in this work.

Special gratitude and greater thank to my mother and all my family members for their efforts and encouragement.

CONTENTS

	P
LIST OF TABLES	
IV. LIST OF FIGURES	
INTRODUCTION	
REVIEW OF LITERATURE	
1. Nanotechnology in agriculture	
2. Nano fertilizers	
3. Effect of hydroxyl apatite Nano-particle on soybean plants	
a. Effect of phosphorus on soybean plants	
b. Effect of hydroxyl apatite Nano-particles on soybean plants	
4. Effect of calcium carbonate Nano-particle on soybean	
plants	
a. Calcium application on soybean and other plants	
b. Calcium carbonate nanoparticles (litho-vit)	
5. Effect of Drought stress on soybean plants6. Effects of Nano-fertilizers on mitigate harmful impact of water shortage.	
MATERIAL AND METHODS	
RESULTS AND DISCUSSION	
1- Soybean growth traits	
A-soybean irrigation intervals	
B- Effect of calcium carbonate Nano-particle on soybean plants	
C- Effect of hydroxyl apatite Nano-particle on soybean plants	
D-Effect of interaction between irrigation intervals and calcium	
carbonate nanoparticles	
E- Effect of interaction between irrigation intervals and hydroxyl	
apatite nanoparticles	
F- Effect of interaction between calcium carbonate nanoparticles	
and hydroxyl apatite nanoparticles	
G-Irrigation intervals X calcium carbonate nanoparticles X	
hydroxyl apatite nanoparticles interaction	

	Page
2- Soybean yield components	56
A-soybean irrigation intervals	56
B- Effect of calcium carbonate Nano-particle on soybean plants	57
C-Effect of hydroxyl apatite Nano-particle on soybean plants	65
D-Effect of interaction between irrigation intervals and calcium	
carbonate nanoparticles	69
E- Effect of interaction between irrigation intervals and hydroxyl	
apatite nanoparticles	69
F- Effect of interaction between calcium carbonate nanoparticles	
and hydroxyl apatite nanoparticles	74
G-Irrigation intervals X calcium carbonate nanoparticles X	
hydroxyl apatite nanoparticles interaction	77
3- Seed chemical composition	86
SUMMARY	89
REFERENCES	96
ARABIC SUMMARY	

LIST OF TABLES

Table No.		Page
1	Soil mechanical and chemical properties of experiment	
	site	25
2	Effect of irrigation intervals on growth attributes of	
	soybean during the two growing seasons 2015, 2017	
	and combine results.	32
3	Effect of soybean irrigation intervals on dry weight	
	accumulation of root, stem, leaves and pods in the two	
	growing seasons 2015, 2017 and combine results	33
4	Effect of calcium carbonate nanoparticles rates on	
	growth attributes of soybean growing seasons 2015,	
	2017 and combine seasons.	35
5	Effect of calcium carbonate nanoparticles rates on dry	
	weight accumulation of root, stem, leaves and pods in	
	the two soybean growing seasons 2015, 2017 and	
	combine results	36
6	Effect of hydroxyl apatite nanoparticles (kg/fed) on	
	growth characters of soybean during the two growing	
	seasons 2015, 2017 and combine results	37
7	Effect of hydroxyl apatite nanoparticles (kg/fed) on dry	
	weight accumulation of root, stem, leaves and pods in	
	the two soybean growing seasons 2015, 2017 and its	
	combine.	39
8	(a) Effect of interaction between irrigation intervals	
	and calcium carbonate nanoparticles on growth	
	characters of soybean during the two growing seasons	
	2015 and 2017	40
	(b) Effect of interaction between irrigation intervals	
	and calcium carbonate nanoparticles on growth	
	characters of soybean during the two growing seasons	
	2015 and 2017	41

Table No.		Page
9	(a) Effect of interaction between irrigation intervals	
	and hydroxyl apatite nanoparticles on growth	
	characters of soybean during the two growing seasons	
	2015 and 2017	43
	(b) Effect of interaction between irrigation intervals	
	and hydroxyl apatite nanoparticles on growth	
	characters of soybean during the two growing seasons	
	2015 and 2017	44
10	(a) Effect of interaction between hydroxyl apatite and	
	calcium carbonate nanoparticles on growth characters	
	of soybean during the two growing seasons 2015 and	
	2017	45
	(b) Effect of interaction between hydroxyl apatite and	
	calcium carbonate nanoparticles on growth characters	
	of soybean during the two growing seasons 2015 and	
	2017	46
11	Effect of irrigation intervals on soybean plant height	
	(cm), number of branches / plant and number of seeds /	
	pod in the two studied seasons; 2015, 2017 and	
	combine data	59
12	Effect of irrigation intervals on soybean pod yield ton	
	per feddan, hulling percentage and 100-seed weight in	
	the two studied seasons; 2015, 2017 and combine data	60
13	Effect of irrigation intervals on seed yield ton per	
	feddan and biological yield ton per feddan of soybean	
	plants in the two studied seasons; 2015, 2017 and	
	combine data	61
14	Effect of calcium carbonate nanoparticles on plant	
	height (cm), number of branches per plant and number	
	of seeds per pod of soybean plants in the two studied	
	seasons; 2015, 2017 and combine data	62

Table No.		Page
15	Effect of calcium carbonate nanoparticles on pod yield	
	ton/fed, hulling percentage and 100-seed weight of	
	soybean plants in the two studied seasons; 2015, 2017	
	and combine data	63
16	Effect of calcium carbonate nanoparticles on seed yield	
	ton per feddan and biological yield ton per feddan of	
	soybean plants in the two studied seasons; 2015, 2017	
	and combine data	64
17	Effect of Hydroxyl apatite nanoparticles on plant	
	height (cm), number of branches per plant and number	
	of seeds per pod of soybean plants in the two studied	
	seasons; 2015, 2017 and combine data	66
18	Effect of Hydroxyl apatite nanoparticles on pod yield	
	ton/fed, hulling percentage and 100-seed weight of	
	soybean plants in the two studied seasons; 2015, 2017	
	and combine data	67
19	Effect of Hydroxyl apatite nanoparticles on seed yield	
	ton per feddan and biological yield ton per feddan of	
	soybean plants in the two studied seasons; 2015, 2017	
	and combine data	68
20	(a) Effect of interaction between irrigation intervals	
	and calcium carbonate nanoparticles on soybean yield	
	attributes during the two growing seasons 2015 and	
	2017	70
	(b) Effect of interaction between irrigation intervals	
	and calcium carbonate nanoparticles on soybean yield	
	attributes during the two growing seasons 2015 and	
	2017.	71
21	(a) Effect of interaction between irrigation intervals	
	and hydroxyl apatite nanoparticles on soybean yield	
	attributes during the two growing seasons 2015 and	72

Table No.		Page
	2017	
	(b) Effect of interaction between irrigation intervals	
	and hydroxyl apatite nanoparticles on soybean yield	
	attributes during the two growing seasons 2015 and	
	2017	73
22	(a) Effect of interaction between hydroxyl apatite and	
	calcium carbonate nanoparticles on soybean yield	
	attributes during the two growing seasons 2015 and	
	2017	75
	(b) Effect of interaction between hydroxyl apatite and	
	calcium carbonate nanoparticles on soybean yield	
	attributes during the two growing seasons 2015 and	
	2017	76
23	Effect of interaction between irrigation intervals,	
	hydroxyl apatite nanoparticles and calcium carbonate	
	nanoparticles on oil percentage of soybean	87
24	Effect of interaction between irrigation intervals,	
	hydroxyl apatite nanoparticles and calcium carbonate	
	nanoparticles on protein percentage of soybean	88

VII

LIST OF FIGURES

Fig. No.		Page
1	X-ray diffraction patterns of hydroxyapatite	
	nanoparticles	27
2	X-ray diffraction patterns of calcium carbonate	
	nanoparticles	28
3	plant height (cm)	48
4	number of branches/plant	49
5	number of leaves/plant	50
6	leaf area index	51
7	number of pods/plant	52
8	number of root nodules/plant	53
9	stem dry weight (g/plant)	54
10	leaves dry weight (g/plant)	55
11	plant height (cm) at harvest	78
12	number of branches/plant at harvest	79
13	number of seed/pod	80
14	soybean pod yield (ton/fed.)	81
15	soybean Hulling%.	82
16	soybean 100-seed weight (g)	83
17	soybean seed yield (ton/fed.)	84
18	soybean biological yield (ton/fed.)	85

INTRODUCTION

Soybean is a fundamental wellspring of vegetable protein for human food and animal feed around the world. It is anticipated to turn into a noteworthy crop in Africa (Sinclair et al. 2014). Soybean possesses an extraordinary position in science and farming, in addition of being a crop with enormous uses. Soybean is cultivated in practically all pieces of the world for human utilization, industry and creature feed (Boydak et al. 2002). Soybean assumes a vital job in providing oil and protein required by people (Agarwal, 2007; Shi et al. 2010). Its protein has incredible potential as a noteworthy wellspring of dietary protein. Oil delivered from soybean seeds is very edible and contains no cholesterol (Essa and Al-Ani 2001).

Irrigation factor is one of the important factors affecting in soybean growth, yield and its components. Exhibiting soybean plants to soil drought at any stage of its life cycle may play a great role in impeding of growth plants, yield and its attributes. The most vital stages for soybean plants to have sufficient water are during pod development and seed fill (Kranz et al. 2012). Water has become a limited resource in Egypt. Hence, the search for technologies/ measures to save/ conserve water in irrigated agriculture has intensified. Therefore, decreasing plant water consumption by stretching irrigation intervals will keep water through reducing number of irrigation but still attain similar economic yield (Mahmoud, et al. 2013). Ibrahim and Kandil (2007) in clay loam soil in Egypt reported that irrigation intervals significantly affected growth and yield attributes. Highest values of plant length (cm), plant dry weight (g), number of seeds /plant and seed yield /fed were achieved by irrigation every two week as compared with irrigation one week and three weeks days.

The rising of nanotechnology and the development of new nanodevices and Nano-materials open up potential novel applications in agriculture and biotechnology (Scott and Chen, 2003; Joseph and