

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of MRI in Cerebral Venous Thrombosis

Thesis

Submitted for Partial Fulfilment of MS.c Degree in **Radio-Diagnosis**

By

Khaled Mostafa Mohammad Khaled M.B.B.Ch.

Supervised by

Prof. Dr. Eman Ahmad Shawki Geneidi

Professor of Radio-diagnosis
Faculty of Medicine - Ain Shams University

Dr. Nermeen Nasry Keriakos

Lecturer of Radio-diagnosis
Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Eman Ahmad**Shawki Geneidi, Professor of Radio-diagnosis,

Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mermeen**Masry Keriakos, Lecturer of Radio-diagnosis,

Faculty of Medicine, Ain Shams University, for her sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Khaled Mostafa Mohammad Khaled

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1 -
Aim of the Work	13
Review of Literature	14
Anatomy of Cerebral Venous System	14
Pathogenesis	
Patients and Methods	55
Results	61
Case Presentation	69
Discussion	82
Summary and Conclusion	92
References	
Arabic Summary	

Tist of Tables

Table N	o. Title	Page No.
Table 1:	Causes of and risk factors associate cerebral venous sinus	
Table 2:	Comparison of MR Venography Technique	ues39
Table 3:	Imaging charachteristics of maturing hem MRI	
Table 4:	Summary of CVT imaging pitfalls	53
Table 5:	Statistical analysis of age & sex distribu	tion61
Table 6:	Age distribution between patients	62
Table 7:	Distribution of clinical symptoms patients	
Table 8:	Site of thrombosis	64
Table 9:	MRI parenchymal and signal changes	66

List of Figures

Fig. No.	Title Po	ige No.
Figure 1:	Diagram of Dural venous sinuses	18
Figure 2:	MRI of dural venous sinuses	
Figure 3:	Superficial cerebral veins	
Figure 4:	Deep cortical veins	
Figure 5:	Meningeal veins	
Figure 6:	Posterior fossa veins	
Figure 7:	Digital subtraction venous phase of	the
	carotid artery arteriogram in lat	eral
	projection	
Figure 8:	An image obtained by CT Venography	
Figure 9:	TOF MRV axial and sagittal sub volu	
	of dural sinuses and cerebral veins	
Figure 10:	PC MRV Axial, Sagittal and coronal	
	volumes of the dural sinuses and cere	
		39
Figure 11:	Gadolinium-enhanced three-dimensi	
	MR venography	
Figure 12:	Axial CT image shows a hypo dense	
T ! 10	temporal lobe venous infarct	
Figure 13:	Unenhanced CT shows multiple so	
	hemorrhages in a large hypo der	
	hemorrhagic infarction with associa	
TO' 1.4	edema and SSS thrombosis	
Figure 14:	Cord sign, unenhancing axial CT Imag the brain shows linear areas of	•
	density (black arrow) and hyper de	_
	Thrombus in SSS (white arrow)	
Figure 15:	T2-weighted MRI showing bilateral h	
rigure 15:	intense lesions with susceptibility arter	-
	compatible with hemorrhagic infarction (
Figure 16:	DWI and ADC images showing infarct in	
1 18410 10	temporo-parietal regions	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 17:	Conventional intra-arterial angio demonstrating a non-filling of the SS	· ·
Figure 18:	Dense triangle sign	
Figure 19:	Empty delta sign	47
Figure 20:	CT scan demonstrates a subtle transverse sinus thrombosis with	n high
Figure 21:	attenuation (arrows) Multi-slice CT showing the incoming of the SSS and sinus con	omplete fluence
Figure 22:	Sagittal reconstructed CT veno image shows irregular filling defe	ects in
Figure 23:	superior sagittal sinus (arrows) Unenhanced sagittal spin echo T1V showing hyper intense thrombus	W MRI inside
Figure 24:	superior sagittal sinus (SSS) Axial MR venogram demonstrates occi- the left transverse sinus, sigmoid sin internal jugular vein	usion of us, and
Figure 25:	Coronal PC MR Venography image no flow signal in superior sagittal transverse and right sigmoid sinuses	shows l, right
Figure 26:	MRV has a main role in different thrombosed sinus from normal varia	ntiating
Figure 27:	(A) FLAIR images show faint Hypersignal along the course of the transverse sinus, (B) SWI show black along the sinus course Inaddit blooming of (C) the sinus, minIP revealed congested draining veins.	intense ne left ooming ion to images
	(D)thrombosis is confirmed by MRV.	51

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 28:	Gadolinium enhanced T1-weighted demonstrating a filling defect (arrow thrombosed SSS walls enhanced to hyperemia of the mater	e) of the nancing e dura
Figure 29:	Sex distribution of patients	
Figure 30:	Age distribution of patients	
Figure 31:	Distribution of clinical symptoms b	
1180110011	patients	
Figure 32:	Site of thrombosis	
Figure 33:	Distribution of thrombosed s	
	between patients	
Figure 34:	Distribution of patients accordi	
O	parenchymal changes	-
Figure 35:	Mode of onset	
Figure 36:	Distribution of patients according	to the
J	MRI appearance of signal changes in	n Dural
	sinuses and veins in T1WI	68
Figure 37:	Distribution of patients according	to the
	MRI appearance of signal changes in	n Dural
	sinuses and veins in T2WI	68
Figure 38:	Case 1	70
Figure 39:	Case 2	71
Figure 40:	Case 3	73
Figure 41:	Case 4	75
Figure 42:	Case 5	78
Figure 43:	Case 6	80
Figure 44:	Case 7	81

Tist of Abbreviations

Abb.	Full term
3D	Three-dimensional
	Apparent diffusion coefficient
	Computed tomography
CTA	
	C1 unglography Cerebral venous sinus thrombosis
	Cerebral venous thrombosis
	Digital Imaging and Communications in
DICOM	Digital Imaging and Communications in Medicine
DSA	Digital subtraction angiography
	Digital subtraction anglographyDiffusion weighted image
	Dijjusion weighted image Gadolinium enhanced
	Internal cerebral vein
	Inferior sagittal sinus
	Maximum intensity projections
	Magnetic resonance imaging
	Magnetic resonance venograms
	Non contrast enhanced MRV
	Number of signals averaged
<i>OS</i>	-
<i>PC</i>	
RF	· - ·
	Rectangular field of view
	Statistical software statistical package
SS	Straight sinus
	Superior sagittal sinus
<i>TCD</i>	Transcranial Doppler ultrasound
<i>TE</i>	Echo time
<i>TOF</i>	Time-of-flight
TR	Repetition time
<i>TS</i>	Transverse sinus

Introduction

Cerebral venous thrombosis CVT is a type of stroke where the thrombosis occurs in the venous side of the brain circulation, leading to occlusion of one or more cerebral veins and dural venous sinus (*Ferro et al.*, 2017).

CVT is a potentially life-threatening disease, accounting for approximately 0.5 % of stroke cases (*Ozdemir et al.*, 2014).

It is an uncommon cause of cerebral infarction relative to arterial disease but is an important consideration because of its potential morbidity and mortality (*Ferro et al.*, 2002).

CVT has a highly variable clinical presentation, from asymptomatic to acute or subacute headaches, signs or symptoms of increased intracranial pressure, focal neurologic deficits, or seizures (*Linn et al.*, 2010).

Accurate and prompt diagnosis of cerebral venous thrombosis is crucial, as timely and appropriate therapy can reverse the disease process and reduce the risk of acute and long-term sequelae (*Bhagyavathi et al.*, 2017).

Since the possible causal factors and clinical manifestations of thrombosis are many and varied requiring a high degree of suspicion, imaging plays a primary role in the diagnosis.

Over the last few years, innovations in radiological techniques have significantly improved the diagnosis and altered the management of this condition.

As the clinical presentation is highly variable, the diagnosis should be considered in young and middle-aged patients with recent unusual headache or with stroke-like symptoms in the absence of the usual vascular risk factors, in patients with intracranial hypertension, and in patients with CT evidence of hemorrhagic infarcts, especially if the infarcts are multiple and not confined to the arterial vascular territories. The average delay from the onset of symptoms to the diagnosis is seven days.

Both CT- and MR venography can confirm a diagnosis of cerebral venous thrombosis, but MR venography is probably more sensitive in the acute phase (Silvis et al., 2017; Ozsvath et al., 1997). MR venography also provides superior visualization of the brain parenchyma, venous infarcts and hemorrhages, and is thus the preferred imaging modality (Ferro et al., 2017).

Venous infarcts occur in approximately 60 % of patients and differ from arterial infarcts in that they cross arterial boundaries. Almost two thirds of venous infarcts have a hemorrhagic component with significantly greater edema than in cases of arterial infarction (Silvis et al., 2017).

The most sensitive examination technique is MRI in magnetic combination with resonance venography (Khandelwal et al., 2006). The combination of an abnormal signal in a sinus and a corresponding absence of flow on magnetic resonance venography confirms the diagnosis of thrombosis, but expert radiologic judgment is required to avoid diagnostic and technical pitfalls (Ayanzen et al., 2000).

If MRI is not readily available, CT scanning is a useful technique for the initial examination, to rule out other acute cerebral disorders and to show venous infarcts or hemorrhages (Majoie et al., 2004).