

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Faculty of science Microbiology Department

Microbial Production of Riboflavin Using Fungal Isolates

A Thesis

Submitted in partial fulfillment of the requirement for M.Sc. Degree in Microbiology

Presented by

Hassan Sobhi Hassan

B.Sc. (Microbiology-Chemistry, 2008)

Department of Microbiology
Faculty of Science
Ain Shams University
2020

Microbial Production of Riboflavin Using Fungal Isolates

A Thesis

Submitted in partial fulfillment of the requirement for M.Sc. Degree in Microbiology

Presented by Hassan Sobhi Hassan B.Sc. (Microbiology-Chemistry, 2008)

Prof. Dr. Yousseria M. Hassan Shetaia

Professor of Microbiology (Mycology) Microbiology Department, Faculty of Science, Ain Shams

University

Prof. Dr. Mona Sayed Shafei
Professor of Chemistry of Natural and Microbial
Products

Department of Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt

Prof. Dr. Mahmoud M. Elaasser

Professor of Microbiology
The Regional Center for Mycology and Biotechnology,
Al-Azhar University

Department of Microbiology Faculty of Science Ain Shams University 2020

Acknowledgment

First and foremost, many thanks for **God**, the kindest and beneficent.

I wish to express my great appreciation and thanks to **Prof. Dr. Yousseria M. Hassan Shetia** Prof. of Microbiology (Mycology), Faculty of Science, Ain-Shams University, for her continuous super-vision, unfailing guidance throughout the whole work, valuable advice and direction of this study.

My deep thanks to **Prof. Dr. Mona**Sayed Shafei Professor of Chemistry of Natural and
Microbial Products, Department of Chemistry of Natural
and Microbial Products, National Research Centre for
her continuous super-vision and guidance especially
during practical work, also her motherhood attitude, help
and support.

I would like to extend my thanks to **Prof. Dr. Mahmoud M. Elaasser** Professor of Microbiology,
Regional Center for Mycology and Biotechnology, AlAzhar University for his patience, support and valuable help.

I am also very thankful to staff members of The Regional Center for Mycology and Biotechnology, Al-Azhar University, staff members of Microbiology Department, Faculty of Science, Ain-Shams University.

Finally, my great thanks to my mother, father, my wife, sisters and all members in my family who had really supported me and suffered a lot during this study.

Dedication

I would like to dedicate this thesis to my mother, my father, my wife, sisters and my sons. To everyone who encouraged and supported me.

All my love and appreciation for them, my family.

Abstract

Riboflavin that commonly known as vitamin B2, is an important B vitamin for maintaining human health and it has been widely used in the fields of feed and food additives and pharmaceuticals. Certain microorganisms have the potential for natural production of vitamins and some fungi, bacteria and yeasts can produce riboflavin. So, the main purpose of current study was selection of the yeasts or fungi which are capable of producing riboflavin and then improving riboflavin production through utilization of different factors. Microorganisms are capable of producing vitamins, which are essential nutrients in the energy production. So, in this study, different strains were collected and cultivated in an enrichment medium for growth of yeasts and fungi. After purification, all colonies were examined for riboflavin production. Based on spectrophotometer and chromatographic analysis, 2 isolates could produce riboflavin. Rhodotorula glutinis isolate was selected as the best riboflavin producers by 49.313µg/ml. Then Rhodotorula glutinis isolate was selected to study on the effect of physiological and biochemical factors on production.

The production of Riboflavin was optimized by applying two factorial experiments. The first (Plakett Burman design) was to reflect the relative importance of fermentation medium components. The second (Box-Behnken design) was to optimize the physical factors affecting Riboflavin.

Immobilization of Riboflavin was performed by two methods namely: Covalent binding and Gel entrapment. The most obvious benefit of the immobilization technique is the ability of continuous cycling, which provides a way to use them in continuous culture maintaining high cell population to achieve fast reaction rates.

Ultra Violet irradiation was chosen to improve the production of riboflavin using *Rhodotorula glutinis*.

Key words: Riboflavin, *Rhodotorula glutinis*, Plakett Burman design, Box-Behnken design, Immobilization and Ultra Violet irradiation.

Contents:

Lis	st of Tables	12
Lis	st of Figures	15
Lis	st of Abbreviations	18
ΙIı	ntroduction	22
Pla	n of work	28
II]	Review of Literature	30
1-	Chemical Characteristics of Flavins	30
2-	Photochemistry of Flavin	31
3-	Dietary and Supplemental Sources of Riboflavin	32
	3.1 Food Sources	32
	3.2 Dietary supplements	34
4-	Riboflavin Intakes and Status	35
5-	Riboflavin Transport, Plasma Binding and Carrier	
Pro	oteins	36
	5.1 Transportation of riboflavin	36
	5.2 Transmembrane Riboflavin Efflux Protein	40
	5.3 Riboflavin-Binding Proteins in Plasma	41
	5.4 Specific Riboflavin Carrier Proteins	43
6-	Storage of Riboflavin and Turnover of Flavin Coenz 46	ymes
7-	Biosynthesis and Regulation	48
۷_	Riboflavin biosynthesis - pathways and regulation	51

	oprocess engineering and industrial production of vin	.54
10-	Implications of Riboflavin Deficiency on Health	.57
10.1	Migraine	.60
10.2	Anemia	.62
10.3	Oxidative stress	.62
10.4	Diabetes mellitus	.63
10.5	Hypertension	.64
10.6	Cancer	.65
11-	Riboflavin as a promising adjuvant in Cancer	
Treatm	ent	.66
12-	Nutritional Control of Metabolite Production	.68
12.1	Carbon Source	.68
12.2	Nitrogen Source	.69
12.3	Phosphate	.69
13-	Medium Optimization	.70
	Classical Medium Optimization Methods One-Facto	
Rem	oval experiments	.71
Supp	plementation experiments	.72
Repl	acement experiments	.72
Phys	sical parameters	.72
13.2	Statistical Medium Optimization	.73
Ехре	erimental Design	.73

Plakett Burman design	/3
Box Behnken design	75
14- History, taxonomy, morphology, and physiology of <i>Rhodotorula glutinis</i>	76
1- Materials	81
1.1 Microorganisms	81
1.2 Chemicals	81
1.3 Reagents	82
1.4 Instruments	82
1.5 Growth Media	82
2- Methods	83
2.1 Maintenance of Fungal Cultures	83
2.2 Preparation of inoculum	
2.3 Quantitative estimation of the microbial biomass	84
2.4 Screening of the Fungal Isolates to Produce Ribofla	
2.5 Qualitative determination of riboflavin using Thin leads chromatography (TLC) methods	•
2.6 Quantitative estimation of riboflavin using Standard Calibration Curve	
3- Effect of different operational variables to optimize riboflavin production	90
3.1 Incubation periods	90
3.2 Incubation temperatures	91
3.3 Nitrogen sources	92

3.4 Age of starter inoculum	93
3.5 Size of inoculum	93
3.6 Carbon sources	94
3.7 Initial pH value	95
3.8 Agitation speeds	96
4- Quantitative estimation of riboflavin	97
5- Statistical designs for the optimization of Riboflavi production	
5.1 Plackett –Burman design	97
5.2 Box-Behnken design	100
6- Immobilization of Riboflavin	102
6.1 Covalent binding	102
6.2 Gel Entrapment	103
7- Effect of Ultra Violet irradiation on <i>Rhodotorula gl</i> for riboflavin-production	
7.1 Effect of different intensities of radiation (254nm, 365nm) at different exposure times	
7.2 Effect of different distances from the UV lamp	105
IV Results	107
 Screening of Fungal Isolates for Riboflavin product 107 	ion
2- Physiological and Biochemical factors affecting riboflavin production:	109
3- Statistical evaluation of factors affecting Riboflavir production	

3.1 Plackett –Burman design	122	
3.2 Box-Behnken design	125	
4- Immobilization of <i>Rhodotorula glutinis</i> for ribo production		
5- Effect of Ultra Violet irradiation on riboflavin-pusing <i>Rhodotorula glutinis</i>		
5.1 Effect of different intensities of radiation (254 365nm) at different exposure times		
5.2 Effect of different distances from the UV lamp	137	
6- Chromatographic Isolation of Riboflavin	139	
V Discussion	141	
VI Summary	159	
VII References		
الملخص العربي	205	

List of Tables

Table,		Page
(1)	Selected Food Sources of Riboflavin (U.S. Department of Agriculture, Agricultural Research Service. Food Data Central, 2019).	34
(2)	Assessment of the independent variables and their levels affecting riboflavin production using the Plackett-Burman experiment.	97
(3)	Evaluation of riboflavin production using The Plackett-Burman experimental design with 7 recommended variables.	98
(4)	Assessment of the actual values of the process variables and their levels affecting riboflavin production using the Box-Behnken factorial design.	99
(5)	Assessment of the three independent variables and their levels affecting riboflavin production using the Box-Behnken factorial design.	100
(6)	Screening of different yeast isolates to produce riboflavin.	107
(7)	Screening of different fungal isolates (molds) to produce riboflavin.	107
(8)	Effect of different incubation periods on riboflavin production using <i>Rhodotorula glutinis</i> .	109