

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Prevalence of Human Papillomavirus (HPV) and Distribution of Genotypes (6, 11, 16 and 18) among Egyptian Women

Thesis

Submitted in Partial Fulfillment of MD Degree in **Microbiology and Ommunology**

By

Sahar Abdel-Rahman Ibrahim Abdel-Razek

M.B.B.ch, M.Sc. in Microbiology and Immunology Faculty of Medicine, Ain Shams University

Under Supervision of

Professor/ Abeer Abd El-Fattah El-Sayed

Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Rania Ahmed Hassan

Assistant Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Shimaa Ahmed Abdel-Salam

Lecturer of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Professor/ Mohamed Ibrahim Mohamed Amer

Professor of Obstetrics and Gynaecology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Professor**/ **Abeer Abd El-Fattah El-Sayed**, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Rania Ahmed Hassan**, Assistant Professor of Medical Microbiology and
Immunology, Faculty of Medicine, Ain Shams University,
for her sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Shimaa Ahmed Abdel-Salam**, Lecturer of Medical Microbiology and
Immunology, Faculty of Medicine, Ain Shams University,
for her great help, outstanding support, active
participation and guidance.

Really, I can hardly find the words to express my gratitude to **Professor**/ **Mohamed Ibrahim Mohamed Amer,** Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Sahar Abdel-Rahman Ibrahim Abdel-Razek

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	7
Introduction	1 -
Aim of the Work	11
Review of Literature	12
Materials and Methods	51
Results	62
Discussion	75
Summary	81
Conclusion and Recommendations	83
References	84
Arabic Summary	

Tist of Tables

Table No	. Title I	Page No.
Table 1:	Primer sequence for HPV screening by (MY11)	
Table 2:	Contents of each amplification reaction t	
Table 3:	PCR conditions	57
Table 4:	Primer sequence for HPV genotypes 6,	
	and 18	
Table 5:	Contents for multiplex PCR reaction	58
Table 6:	Conditions for multiplex PCR reaction	59
Table 7:	Sociodemographic data of the studied gre	oup 62
Table 8:	Clinical data of studied women	_
Table 9:	Relation between HPV infection and	
	factors of infection	68
Table 10:	Relation between HPV infection and re-	easons
	for consultation	69
Table 11:	Relation between HPV status and cy	tology
	results	
Table 12:	Relation between HPV Genotype 6 a studied variables	nd all
Table 13:	Relation between HPV Genotype 11 a	
14610 10.	studied variables	
Table 14:	Relation between HPV Genotype 16 a	
14010 11	studied variables	
Table 15:	Relation between HPV Genotype 18 a	
14010 100	studied variables	74

List of Figures

Fig. No.	Title	Page No.
Figure 1:	HPV genomic organization	13
Figure 2:	Composition HPV capsid	15
Figure 3:	The phylogenic tree of HPV	18
Figure 4:	Histologic Features of a Wart	28
Figure 5:	Gel electrophoresis for detection of am HPV-DNA (450 bp) and beta-globin (250 bp) products	gene
Figure 6:	Gel electrophoresis of amplified genotypes (6, 11, 16 and 18)	
Figure 7:	Prevalence of HPV among the studied a	group 66
Figure 8:	Percentage of each HPV genotype a positive cases.	•
Figure 9:	Percentage of single and co-infection HPV positive women (n=15)	

Tist of Abbreviations

Abb.	Full term
AAHS	.Amorphous aluminum hydroxyphosphate sulfate
<i>bp</i>	.Base pair
CDC	. Centers for Disease Control and Prevention
CIN	. Cervical intraepithelial neoplasia
CTLs	. Cytotoxic T cells
DCs	. Dendritic cells
<i>E</i>	. Early
EMENA	.Extended Middle East and North Africa
<i>EV</i>	.Epidermodysplasia verruciformis
<i>G1</i>	. Gap 1
HIV	.Human immunodeficiency virus
<i>HPV</i>	.Human papillomavirus
HR	.High-risk
HS	. Highly significant
HSIL	.High-grade lesions
HSPGs	.Heparin sulfate proteoglycan
<i>ICTV</i>	.International Committee on the Taxonomy of Viruses
<i>IFN</i>	.Interferons
<i>Ig</i>	.Immunoglobulin
<i>IL-8</i>	.Interleukin 8
<i>IQR</i>	.Interquartile range
<i>L</i>	. Late
<i>LBP</i>	.Liquid base Pap technology
LCR	.Long control region
LCs	.Langerhans cells

Tist of Abbreviations cont...

Abb.	Full term
<i>LR</i>	Low risk
LSIL	Low-grade lesions
MCP-1	Monocyte chemo-attractant protein -1
<i>MHC</i>	Major histocompatibility complex
<i>NS</i>	Non-significant
ORF	Open reading frame
Pap	$ Papanicolaou\mbox{-}stained$
PVs	Papilloma viruses
<i>Rb</i>	Retinobla stoma
<i>RFLP</i>	$Restriction\ fragment\ length\ polymorphism \\ method$
S	Significant
<i>SD</i>	Mean, Standard deviation
<i>SIL</i>	Squamous intraepithelial lesions
SPSS	Statistical package for social sciences
STI	Sexually transmitted infection
Th1	T helper 1
<i>TNF-α</i>	$ Tumor\ necrosis\ factor-alpha$
<i>VLPs</i>	Viral-like particles

Introduction

uman papillomavirus (HPV) is the most common sexually transmitted infection (STI) (Centers for Disease Control and Prevention, 2017). Over 100 different types of HPV exist, and some are likely to cause more complications than others. The epidemiological classification of cervical cancer-associated HPV types describes 15 types as carcinogenic or high-risk (HR) (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73 and 82) and 12 types as low-risk (LR) (6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, and CP6108) (Sontakke et al., 2019).

Low-risk HPV types cannot cause cervical cancer but cause genital warts that are very common and highly infectious. High-risk types of HPV are greatly associated with cancer cervix. Of these, HPV-16 and HPV-18 are the two most common HR HPV types. They are responsible for 70 %, of cervical cancer cases worldwide (*Barton et al.*, 2019).

Cervical cancer ranks as the 3rd leading cause of female cancer in the World. Cervical cancer is the 2nd most common female cancer in the women aged 15 to 44 years in World (*Bruni et al.*, 2019). Most of deaths caused by cervical cancer occur in developing countries. Cervical cancer ranks as the 14th most frequent cancer among women in Egypt and the 11th most frequent cancer among women between 15 and 44 years of age (*Ghorab et al.*, 2019).

There are three commercially prophylactic vaccines available; these are Cervarix (a bivalent vaccine against HPV-16 and HPV-18), Gardasil (a tetravalent against HPV-6, 11, 16, and 18), and Gardasil 9 (9-valent vaccine against HPV6, 11, 16, 18, 31, 33, 45, 52, and 58) (*Chan et al.*, 2019).

In developing countries such as Egypt HPV vaccine is not part of the routine immunization programs and is regarded as a costly vaccination. Over 25 million women over 15 years old are at risk of developing cervical cancer in Egypt (*Gohar et al.*, 2019).

AIM OF THE WORK

o study the prevalence of HPV and the type distribution of genotypes (6, 11, 16 and 18) in cervical specimens from Egyptian females attending gynaecological outpatient clinic in Ain shams Obstetrics and Gynaecology hospital.

REVIEW OF LITERATURE

Human Papillomavirus (HPV)

uman papillomaviruses (HPVs) are a group of small non-enveloped, epitheliotropic, circular double-stranded DNA viruses that infect mucosal and cutaneous epithelia in humans. HPVs cause benign lesions, such as genital warts as well as malignant lesions, such as cancers of anogenital, oropharyngeal and cutaneous epithelia (*Martora et al.*, 2019).

Failure of tissue culture of the virus had limited its studies, until mid-1970s, when the molecular cloning and recombinant DNA technologies had enabled us to study their biological and biochemical properties. The molecular cloning of HPV genome had led to the recognition of multiple HPV genotypes and their close association with human cancers (*Bernard*, 2005).

Morphology and Structure of HPVs:

HPV is a small, non-enveloped virus, 55 nm in diameter. The virus has a single double stranded circular DNA molecule and icosahedral capsid (*Sontakke et al.*, 2019).

HPV genome:

The HPV genome is a single double stranded DNA molecule about 8kbp in size. It is divided into three regions: