

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

A THESIS FOR PARTIAL FULFILMENT OF M.D. DEGREE IN RADIODIAGNOSIS

Title:

Comparison between RECIST and PERCIST criteria in Therapeutic Response Assessment in cases of Lymphoma

Postgraduate Student: Marwa Mohammed Hasan Tawfik

Degree: M.B.B. Ch, M.Sc Radiology

DIRECTOR: Ahmed Mohamed Monib

Academic Position: Professor of Radiodiagnosis

Department: Radiodiagnosis department, Ain Shams University

Co-DIRECTOR: Aya Yassin Ahmed **Academic Position:** Assistant Professor

Department: Radiodiagnosis department, Ain Shams Universisty

Co-DIRECTOR: Susan Adil Ali **Academic Position:** Lecturer

Department: Radiodiagnosis department, Ain Shams University

List of Contents

Title	Page No.
List of Tables	i
List of Figures.	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	3
Review of Literature	
Pathology of lymphoma	4
₹ PET/CT technique	21
₹ PET/CT Manifestations in lymphoma	36
₹ RECIST Criteria	56
₹ PERCIST Criteria	73
Patients and Methods	82
Results	88
Illustrative Cases	100
Discussion	126
Summary	130
Conclusion	131
References.	133
Arabic Summary	148

List of Tables

Table No.	Title	Page No.
Table (2): Revised in Table (3): Methods of Table (4): Methods of Table (5): PET/CT Letter (5): RECIST (Cable (7): RECIST (Cable (8): Categoriza	Criteria for Categorizing Response of Tar Criteria for Categorizing Response of No Ation of Overall Disease Response with F of the overall response in PERCIST 1	ned PET and CT . 30 31 51 rget Lesions. 68 on-target Lesions. 69 RECIST Criteria. 71
Table (10) : Positron (PERCIS	Emission Tomography Response Criteria (T)	in Solid Tumors
Table (11): Different	pathological types and subtypes of the s	study population. 89
Table (13): Difference Table (14): Baseline	rs before and after chemotherapy in studie between injected dose before & after tumor characteristics in the study population between tumor size and CT-based the pulation.	treatment 90 ation. 91
response Table (17): Correlation in the stu	on between disease characteristics and C in the study population. on between tumor SUL _{peak} and PET-base day population. on between disease characteristics and P	93 ed therapeutic response 94
response Table (19): Comparis response Table (20): Comparis	in the study population. son between RECIST 1.1 and PERCIST assessment in the study population. son between RECIST 1.1 and PERCIST assessment in the study population.	95 1.0 based therapeutic 97

List of Figures

Fig. No.	Title	Page No.
Figure (1): Reed_Sternberg or	ells	12
	main development profiles of non-Hodgkin"s lymp	
	cular types	
	ion	
Figure (7): Patient with metas	tatic colorectal carcinoma	29
Figure (8): PET/CT of metalli	ic left hip prosthesis	34
Figure (9): Patterns of physic	ologic skeletal muscle FDG uptake on PET/CT	35
Figure (10): Female patient	with follicular lymphoma	38
	dal uptake	
Figure (12): Extensive lymp	hadenopathy in a case of NHL	39
Figure (13) A case of NHL (mantle cell type) with bulky lymphadenopathy	41
	th diffuse large B-cell lymphoma	
Figure (15): Whole body FD	G-PET/CT baseline scan for initial staging for N	HL43
Figure (16): Whole body FD	OG PET/CT follow-up post therapy scan	44
	stinal lymphoma with pericardial involvement	
Figure (18): 18F-FDG brain	imaging in primary CNS lymphoma (PCNSL)	46
Figure (19): A case of NHL	showing nasopharyngeal involvement	47
Figure (20): A case of tonsil	llar B-cell lymphoma	48
Figure (21): A case of non-H	Hodgkin's lymphoma with muscular involvement.	49
Figure (22): Fused PET/CT	image demonstrated multiple subcutaneous lesion	s50
Figure (23): Progressive refr	actory Hodgkin"s lymphoma with tuberculosis	55
Figure (24): A patient with o	colorectal cancer & hepatic metastasis	58
Figure (25): Axial CT image	after radioembolization of hepatic metastases	59
Figure (26): Normal non-tar	get and target lymph nodes in lymphoma	60
Figure (27): A case of multip	ple hepatic metastases from colorectal cancer	61
Figure (28): Optimal manner	r for measuring the coalesced lymph nodes	62
Figure (29): A case of metas	tatic breast cancer with a sclerotic bone lesion	63
Figure (30): follow-up in a p	patient with colon cancer with hepatic metastasis.	64
	in a case of hepatocellular carcinoma	
Figure (32): Comparing bas	eline & post therapy scans using PERCIST	74
Figure (33): 3-cm-diameter	spherical VOI in right side of liver	75
Figure (34): Example calcul	ation of liver background for normalization of SU	JL77
Figure (35): FDG PET image	e shows SULpeak in single large heterogeneous to	umor78
Figure (36): A man of sarcon	ma with multiple distant metastatic lesions	79
Figure (37 &38): Comparison	on between RECIST 1.1 and PERCIST 1.0 based	therapeutic
response assessment in the st	udy population	99

List of Abbreviations

4bb.	Full term
	AC Attenuation correction
•	BATBrown adipose tissue
•	bFGFBasic fibroblast growth factor
•	CMR Complete metabolic response
•	CR Complete response
•	CTComputed tomography
•	DLBCLDiffuse Large B-Cell Lymphomas
•	EANMEuropean Association of Nuclear Medicine
•	EBV Epstein-Barr virus
•	EORTCEuropean Organization for Research and Treatment of
	Cancer
•	FISHFluorescence in situ hybridization
•	GALTGastric associated lymphoid tissue
•	GLUTGlucose transporters
•	HIVHuman Immunodeficiency Virus
•	HLHodgkin lymphoma
•	HPFHigh-power fields
•	HRCT High-resolution CT
•	ILSG International Lymphoma Study Group
•	LP Lymphocytic predominant
•	MALTMucosa associated lymphoid tissue
•	MCMixed cellularity
•	MFMycosis fungoides
•	NCI National Cancer Institute
•	NHLNon-Hodgkin lymphoma
•	NKNatural killer
•	NSCHLNodular sclerosis classical Hodgkin lymphoma
•	PCNSL Primary CNS lymphoma PD Progressive disease
•	PDGFPlatelet derived growth factor
•	PETPositron Emission Tomography
•	PERCIST Positron Emission tomography Response Criteria in Solid
	Tumors
•	PMBL Primary mediastinal B cell lymphoma
•	PMDProgressive metabolic disease

- PMR..... Partial metabolic response
- PMT.....Photomultiplier tubes
- PR......Partial Response
- REAL.....Revised European-American Classification of Lymphoid
- RECIST....Response Evaluation Criteria In Solid Tumors
- rIPI......Revised international prognostic index
- RS.....Reed Sternberg cells
- SD.....Stable disease
- SMD......Stable metabolic disease
- SPSSStatistical package for social science
- SS...... ..Sézary syndrome
- SUL......Standardized uptake corrected to lean body mass
- SUV..... Standardized uptake value
- TCL T-Cell lymphoma
- VEGF......Vascular endothelial growth factor
- VOI......Volume of interest
- WHO......World Health Organization

INTRODUCTION

Lymphomas have had a somewhat different approach to response assessment than solid tumours. Briefly, residual or even bulky masses after therapy completion are frequent in both Hodgkin disease and non-Hodgkin lymphoma. Masses often do not regress completely after adequate (curative) treatment because of residual fibrosis and necrotic debris. (*Baratto et al.*, 2016)

In patients with lymphoma, anatomic response criteria often underestimate the chemotherapeutic effect.(*Maffione et al*, 2015)

RECIST and RECIST 1.1 are the standard anatomic response assessments currently accepted by most regulatory agencies, however this anatomic processes do not have the ability to detect functional changes in tumours resulting from early effective treatment. Hence, Functional imaging with PET offered major advantages.(*Moghbel et al, 2016*)

PET assessments of treatment response with 18F-FDG appear to have substantial biologic relevance when obtained at the end of treatment, at mid treatment, or soon after treatment is started. Tracer uptake by a tumour is expected to decline over time with effective treatment. Thus, capturing and reporting the fractional change in SUV from the starting value and when the