

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Propofol-dexmedetomidine Versus Propofolketamine for Anesthesia of Endoscopic Retrograde Cholangiopancreatography (ERCP) (Comparative Study)

Thesis

Submitted for Partial Fulfillment of Master Degree in Anesthesia

ByMohammed Ayman Abd El-Aziz Salama (M.B.B.Ch)

Under Supervision of **Prof. Dr. Mohamed Sidky Mahmoud Zaki**

Professor of Anesthesia, Intensive Care Medicine and Pain Management Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Sameh Salem Hefny Taha

Assistant Professor of Anesthesia, Intensive Care Medicine and Pain Management Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Fady Adib Abd Elmalek Morkos

Assistant Professor of Anesthesia, Intensive Care Medicine and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

I am deeply thankful to "Allah" by the grace of whom, this work was possible.

I would like to express my deepest appreciation and gratitude to **Prof. Dr. Mohamed Sidky,** Professor of Anesthesia, Intensive Care Medicine and Pain Management, Ain Shams University, for his kind supervision, valuable advises and constructive guidance.

I am greatly indebted to **Assist. Prof. Dr. Sameh Salem,** Assistant professor of Anesthesia, Intensive Care Medicine and Pain Management, Ain Shams University, for his greatest and unforgettable help and for his valuable comments.

My sincerest and cardial thanks to Assist. Prof. Dr. Fady Adib, Assistant professor of Anesthesia, Intensive Care Medicine and Pain Management, Ain Shams University, for his valuable and great supervision.

I am greatly thankful to **Dr.Yasser Shafik**, Head of the Anesthesia Department, Kobri Kobba Military Medical Complex and **Dr.Ismail El deb**, Consultant of Anesthesia, Kobri Kobba Military Medical Complex for their effort and support in our clinical study.

Special Thanks for my parents and my wife for their support all the time.

Lastly but not the least I should like to express my appreciations to the patients for their cooperation throughout my work.

Mohamed Ayman Abd El-aziz

Abstract

Background: The ideal method for anesthetic management during ERCP varied between deep sedation and general anesthesia with preference for general anesthesia over sedation.

Aim of the study: Primary aim: The aim of this study will to compare the effects of propofol-dexmedetomidine and propofol-ketamine combinations for anesthesia in patients undergoing ERCP regarding the following outcome measures: Hemodynamic changes. Respiratory parameters changes. Propofol requirements. The recovery criteria. Post-operative pain. Secondary aim: To assess the rate of other anesthetic and procedural complications regarding the following outcome measures: Anesthetic complications: Post-procedural nausea and vomiting. Post-procedural cognitive dysfunction or hallucinations. Procedural complications: Bleeding: may occur by sphincterotomy. Duodenal perforation; it is a serious condition but it has a rare incidence and usually requires surgical intervention.

Material and methods: Patients ERCP, aged 20-50ys old, ASA I-II-III, were randomly allocated in two groups each of which was 25 by a probability method in the form of sequentially numbered, opaque, sealed envelopes (SNOSE) that will be divided in 2 groups (25 envelopes for each group) with random selection for each patient for an envelope. **Group-I** received dexmedetomidine loading 1μg/kg slow IV over 15min then infused at a rate of 0.5μg/kg/h by syringe pump. **Group II** received Ketamine 1mg/kg slow IV over 15min then infused at a rate of 0.5mg/kg/h by syringe pump. **Both groups** received propofol; 1-2mg/kg induction – then 5mg/kg/h IV infusion, 0.5mg/kg boluses guided by hemodynamic parameters, atracurium 0.5mg/kg intubating dose followed by 0.1mg/kg every 20min. Cuffed ETT was inserted and CMV. By the end of the procedure, patients turned supine and reversed by administration of neostigmine (0.05mg/kg) + atropine (0.01mg/kg). Extubation was performed after fulfillment of the criteria of extubation.

Conclusion: Dexmedetomidine-propofol combination was better than ketamine-propofol combination as regard; hemodynamic parameters (intra- and post-procedural), PONV, cognitive functions and recovery time. Incidence of pain had no clinical significant value between both groups. Total propofol consumption had no clinical significant difference between both groups.

Recommendation: Dexmedetomidine - propofol combination as TIVA technique for ERCP requires further studies with recommendation to include; different types of patients; geriatric, critically ill and increasing the sample size of patients.

Keyword: ERCP- TIVA- PONV- PPH-SOD

List of Contents

Title	Page No.
List of Abbreviations	iv
List of Tables	vi
List of Figures	i
Introduction	i
Objectives and Aim of the Work	6
Review of Literature	
Pharmacological Aspects of; Dexmedetomid Propofol, Ketamine	
I- Dexmedetomidine	7
II- Propofol	22
III- Ketamine	37
Perioperative Management of Patients v Hepatic Insufficiency	
Anesthetic Implications of Anesthesia Endoscopic Retrograde Cholangio-Pancreatogra (ERCP)	phy
Materials and Methods	79
Results	92
Discussion	107
Conclusion & Recommendations	131
Summary	132
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
A DD	Astarial Disast Duraness
ABP	
	Advanced Cardiac Life Support.
	Adreno-Cortico- Trophic Hormone.
ADH	
	Alanine Amino-Transferase
	Alanine Amino-Transferase.
	American Society of Anesthesiologists.
	American Society of Gastro-Enterology.
	Aspartate Amino-Transferase
AV	
α	-
BP	
β	
	cyclic-Adenosine Mono-Phosphate.
CBF	
	Cerebral Metabolic Rate for o ₂
	consumption.
CNS	
COP	•
CSF	•
CT	
ECG	
	Electro-Encephalo-Graphy
	Endoscopic Retrograde Cholangio-
	Pancreatography.
ETT	
EUS	•
GA PA	
GABA	Gamma Amino-Butyric Acid.

List of Abbreviations Cont...

Abb.	Full term
GI	Gastro-Intestinal
GIT	
h	
H2	
HBF	
	Hepato-Pulmonary Syndrome.
HR	
HRS	
ICP	•
IgG	
IM	
	International Normalized Ratio.
IOP	
IV	
IVC	
LFTs	Liver Function Tests.
Log	Logarithm.
LT	_
MAP	Mean Arterial Pressure.
MELD	Mortality in End Stage Liver Disease
	without liver transplantation.
MRCP	Magnetic Resonance Cholangio-
	Pancreatography.
MRI	Magnetic Resonant Image.
NMDA	N-methyl-D-Aspartate.
NPO	•
	Non Steroidal Anti-Inflammatory Drugs.
PACU	
	Post-Anesthesia Discharge Scoring
	System.

List of Abbreviations Cont...

Abb.	Full term
DEED	Positive End Expiratory Pressure.
PEP	~ · · · · · · · · · · · · · · · · · · ·
	Post-Operative Nausea and Vomiting.
	Porto-Pulmonary Hypertension.
	Procedural Sedation Analgesia.
PT	
P-value	
	QT interval corrected to heart rate.
R	
RA	
RT	
S	
SA	
SD	
Sec	
	Sphincter of Oddi Dysfunction.
	Oxygen saturation in pulsating blood
	flow.
	Statistical Program for Social Science.
	Trans-jugular Intra-hepatic Porto-
	systemic Shunt.
	Total Intravenous Anesthesia.
UOP	
US	
V/Q	
VAS	
Vd	_

List of Tables

Table No.	Title	Page No.
Table (1):	Causes of hepatic dysfunction ba	
Table (2):	Stages of recovery	76
Table (3):	Aldrete score, patients will be a points of 0, 1, and 2 for each following	of the
Table (4):	Comparison between dexmedete and ketamine as regard demograph time of procedure and ASA classifica	ic data,
Table (5):	Comparison between dexmedete and ketamine as regard intra-pro- heart rate (HR) beats/min	ocedural
Table (6):	Comparison between dexmedete and ketamine as regard intra-pro MAP (mmHg)	ocedural
Table (7):	Comparison between dexmedete and ketamine as regard total propofol (mg)	dose of
Table (8):	Comparison between dexmedete and ketamine as regard post-proheart rate (beats/min)	ocedural
Table (9):	Comparison between dexmedete and ketamine as regard post-pro-	ocedural
Table (10):	Comparison between dexmedete and ketamine as regard PONV, parand hallucination, agitation and irri	in score

List of Tables Cont...

Table No.	Title	Page No.
Table (11):	Comparison between dexmed and ketamine as regard a complications	respiratory
Table (12):	Comparison between dexmed and ketamine as regard reco	very time
Table (13):	Comparison between dexmed and ketamine as regard acute complications	endoscopic

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pre-Synaptic activation adrenoceptor inhibits the epinephrine, terminating the pain signals	release of nor- e propagation of
Figure (2):	Integrative regulation of blo different α2-adrenergic recep	
Figure (3):	Chemical structure of propof	ol22
Figure (4):	Chemical structure of ketam	ine . 37
Figure (5):	Duodenoscopic image of two extracted from common by sphincterotomy	oile duct after
Figure (6):	Fluoroscopic image of comstone seen at the time of ERG	
Figure (7):	Fluoroscopic image showin the pancreatic duct of investigation. Endoscope is v	during ERCP
Figure (8):	Comparison between dexme ketamine as regard age patients.	of the studied
Figure (9):	Comparison between dexme ketamine as regard time of (min)	f the procedure
Figure (10):	Comparison between dexme ketamine as regard ASA class	
Figure (11):	Comparison between dexme ketamine as regard intra-pro	
Figure (12):	Comparison between dexme ketamine as regard intra-pro	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (13):	Comparison between dexmedet ketamine as regard total dose (mg).	e of propofol
Figure (14):	Comparison between dexmedet ketamine as regard post-pro (beats/min)	cedural HR
Figure (15):	Comparison between dexmedet ketamine as regard post-proced	
Figure (16):	Comparison between dexmedet ketamine as regard PONV	
Figure (17):	Comparison between dexmedet ketamine as regard pain score (
Figure (18):	Comparison between dexmedet ketamine as regard post cognitive dysfunction and hallud	st-procedural
Figure (19):	Comparison between dexmedet ketamine as regard recovery tin	
Figure (20):	Comparison between dexmedet ketamineas regard acute complications.	endoscopic