

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

DESIGN AND IMPLEMENTATION OF SOLAR SIMULATOR

By

Ahmed Samir Abd-Elaziz Abd-Elmuti

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

DESIGN AND IMPLEMENTATION OF SOLAR SIMULATOR

By **Ahmed Samir Abd-Elaziz Abd-Elmuti**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Khaled A. El-Metwally

Prof. Dr. Mohamed B. Zahran

Electrical Power and Machines Dept. Faculty of Engineering, Cairo University President of National Authority for Remote Sensing and Space Science

Assoc. Prof. Dr. Abdelmomen O. Mahgoub

Electrical Power and Machines Dept. Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

DESIGN AND IMPLEMENTATION OF SOLAR SIMULATOR

By **Ahmed Samir Abd-Elaziz Abd-Elmuti**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Khaled Ali Mohamed El-Metwally, Thesis Main Advisor

Professor - Electrical Power and Machines Dept., Faculty of Engineering, Cairo University

Prof. Dr. Mohamed Bayoumy Abdel-Kader Zahran, Advisor

Former Head of Photovoltaic Cells Dept., Electronics Research Institute, and Currently President of National Authority for Remote Sensing and Space Science

Prof. Dr. Mohamed Ahmed Moustafa Hassan, Internal Examiner

Professor Emeritus - Electrical Power and Machines Dept., Faculty of Engineering, Cairo University

Prof. Dr. Mahmoud Mohamed Ahmed Salem, External Examiner

Former Head of Power Electronics and Energy Conversion Systems Dept., Electronics Research Institute, and Currently Dean of the Faculty of Industry and Energy Technology, Delta Technology University

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

Engineer's Name: Ahmed Samir Abd-Elaziz Abd-Elmuti

Date of Birth: 26/9/1992 **Nationality:** Egyptian

E-mail: Ahmed samir1246@yahoo.com

Phone: 01151335250

Address: Diarb negm, Sharkia

Registration Date: 1/10/2015 **Awarding Date:** 1/2020

Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors:

Prof. Dr. Khaled A. El-Metwally Prof. Dr. Mohamed B. Zahran

Assoc. Prof. Dr. Abdelmomen O. Mahgoub

Examiners:

Prof. Dr. Khaled Ali Mohamed El-Metwally (Thesis main advisor)

Prof. Dr. Mohamed Bayoumy Abdel-Kader Zahran (Advisor)
Former Head of Photovoltaic Cells Department-Electronics Research Institute-Currently
President of National Authority for Remote Sensing and Space Science

Prof. Dr. Mohamed Ahmed Moustafa Hassan (Internal examiner)

Prof. Dr. Mahmoud Mohamed Ahmed Salem (External examiner)
Former Head of Power Electronics and Energy Conversion Systems DepartmentElectronics Research Institute-Currently Dean of the Faculty of Industry and Energy
Technology-Delta Technology University

Title of Thesis:

Design and Implementation of Solar Simulator`

Key Words:

Solar simulator; Photovoltaic cells; Genetic Algorithm; Flyback converter; Temperature control;

Summary:

This thesis focuses on the design of the solar simulator prototype based on LED as a light source to simulate the solar spectrum. This work also discusses the design of the proposed power supply to provide the needed power of the solar simulator. In addition, a proposed temperature control system using PID controller is applied and implemented to fix the temperature at Standard Test Conditions of 25 °C. The theoretical and experimental results have demonstrated the efficiency of the proposed solar simulator.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Samir Abd-Elaziz Abd-Elmuti Date: / / 2020

Signature:

Dedication

I dedicate this work to my grandfather (Abd-Elaziz Abd-Elmuti -May Allah give mercy to his soul), my father, my mother, my sisters, my wife, and my daughter.

Acknowledgments

First and foremost, thanks to Allah for answering my prayers and for all the gifts I have been blessed with.

Secondly, I would to thank Prof. Dr. Khaled A. El-Metwally, Prof. Dr. Mohamed B. Abdel-Kader, and Assoc. Prof. Dr. Abdelmomen O. Mahgoub for their enthusiasm, encouragement, guidance and support that enabled me to develop an understanding of the research.

I would also like to acknowledge the great efforts to Assoc. Prof. Dr. Aref Eliwa throughout the work in this thesis. I would also like to my truthful thanks to all members of Electronics Research Institute specially the members of PV cells Department.

TABEL OF CONTENTS

DISCL	AIMERI				
DEDIC	CATIONII				
ACKN	ACKNOWLEDGMENTSIII				
TABE	L OF CONTENTSIV				
LIST (OF FIGURESIX				
LIST (OF TABLESXIII				
LIST (OF SYMBOLS AND ABBREVIATIONSXIV				
ABSTI	RACT XVI				
CHAP'	TER 1 : INTRODUCTION1				
1.1	Problem Definition and Background1				
1.2	Objective3				
1.3	Thesis Outline				
CHAP'	TER 2 : LITERATURE REVIEW5				
2.1	Introduction5				
2.2	Standard Solar Simulator for Terrestrial PV Cell Testing				
2.3	Optical Components of the Solar Simulator7				
2.3.1	Light sources				
2.3.2	Filters8				
2.3.3	Reflectors8				
2.3.4	Integrator lens9				
2.3.5	Collimating lens9				

2.4	I-V Characteristic Calibration	9
2.5	The Requirements Performance of Solar Simulator	11
2.6	Review of Solar Simulators Based on Various Types of Light Sources	13
2.6	1 Review of solar simulators based on tungsten halogen lamps	13
2.6	2 Review of solar simulators based on xenon lamps	14
2.6	3 Review of solar simulators based on carbon arc lamps	15
2.6	4 Review of solar simulators based on metal halide lamps	17
2.6	5 Review of solar simulators based on LED lamps	17
2.7	Summary	19
	PTER 3 : SELECTION OF LIGHT SOURCES FOR SULATOR	SOLAR 20
3.1	Introduction	20
3.2	Types of Light Sources Used in the Solar Simulator	20
3.2.	1 Carbon arc lamp	20
3.2.	2 Quartz tungsten halogen lamp	20
3.2	3 Mercury xenon lamp	21
3.2	4 Xenon arc lamp	21
3.2	5 Metal halide arc lamp	21
3.2	6 LED lamp	23
3.3	Photometry and Radiometry	24
3.4	Photometry and Radiometry Units	27
3.5	Available Different Types of LEDs in Markets	28

3.6	Spe	ectral Characteristics of LEDs	28
3.7	Spe	ectral Irradiance Estimation of LED Solar Simulator Based on Ga	A31
3.8	Des	signing of the Spectral Match for the Proposed Solar Simulator	40
3.9	Des	signing for Uniformity of the Solar Simulator	42
3.10	Sun	nmary	45
		R 4 : DESIGN OF POWER SUPPLY USING	
4.1	Intr	oduction	46
4.2	Bac	ekground of the Flyback Converter	46
4.3	Circ	cuit Description of the Flyback Converter	47
4.4	Оре	erating Modes of the Flyback Converter	47
4.4	.1	CCM mode of operation	48
4.4	.2	DCM mode of operation	50
4.4	.3	Boundary between CCM and DCM	52
4.5	Des	sign of the Power Supply Using Flyback Converter	54
4.5	.1	Input component value calculation	54
4.5	.2	Selection of IGBT	56
4.5	.3	Calculation of maximum duty cycle	57
4.5	.4	Design of the transformer	57
4.5	.5	Design of the snubber circuit	66
4.5	.6	Design of the output capacitor	67

4.5	5.7	Design of gate driving circuit	68
4.5	5.8	Design of feedback for the flyback converter	68
4.5	5.9	Simulation of power supply of solar simulator	70
	4.5.9.	1 Modeling of LEDs in LTspice	70
	4.5.9.	2 Simulation of a multi-output flyback converter	70
4.6	Ten	nperature Control of the Solar Simulator	77
4.6	5.1	Background of the PID controller	77
4.6	5.2	Steps of temperature control using PID controller	77
4.7	Sun	nmary	79
CHA	APTE	R 5 : EXPERIMENTAL RESULTS	80
5.1	Intr	oduction	80
5.2	The	E LED Light Source of the Solar Simulator	80
5.3	The	e Power Supply of the Solar Simulator Using Flyback Converter	80
5.3	3.1	AC to DC converter	81
5.3	3.2	Transformer construction	83
5.3	3.3	IGBT and gate driving circuit	83
5.3	3.4	A universal CCM flyback converter	85
5.4	Ten	nperature Control of the Solar Simulator	88
5.5	The	e Complete System of the LED Solar Simulator	89
5.6	Sun	nmary	92
CHA	APTE	R 6 : CONCLUSIONS AND FUTURE WORK	93
6.1	Cor	nclusions	.93

6.2	Recommendations for Future Work	93
REF	ERENCES	95
APP	ENDIX A: ARDUINO MEGA 2560 DATASHEET	102
APP	ENDIX B: DHT11 SENSOR DATASHEET	103
APP	ENDIX C: LEDS DATASHEETS	104