

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

OPTIMUM CONFIGURATION OF WING-TAIL TANDEM ARRANGEMENT AT LOW REYNOLDS NUMBER

By

Muhammad Shaaban Eissa Ahmad Abul-Ela

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

OPTIMUM CONFIGURATION OF WING-TAIL TANDEM ARRANGEMENT AT LOW REYNOLDS NUMBER

By Muhammad Shaaban Eissa Ahmad Abul-Ela

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Under the Supervision of

Prof. Dr. Mohamed Madbouli Abdelrahman

.....

Professor of Aerodynamics Department of Aerospace Engineering Faculty of Engineering, Cairo University

OPTIMUM CONFIGURATION OF WING-TAIL TANDEM ARRANGEMENT AT LOW REYNOLDS NUMBER

By Muhammad Shaaban Eissa Ahmad Abul-Ela

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Aerospace Engineering

Approved by the
Examining Committee

Prof. Dr. Mohamed Madbouli Abdelrahman Thesis Main Advisor

Prof. Dr. Galal Bahgat Salem, Internal Examiner

Prof. Dr. Muhammad Muhammad El-Refaee, External Examiner

Dept. of Mechanical Power, Faculty of Engineering, Misr University for Science and Technology (MUST)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer:** Muhammad Shaaban Eissa Abul-Ela

Date of Birth: 07/01/1992 **Nationality:** Egyptian

E-mail: muhammadshaaban92@gmail.com

Phone: 0112-354-4354

Address: 9th Lithy St, Faysal, Giza

Registration Date: 1/10/2015 **Awarding Date:** / /2020

Degree: Master of Science **Department:** Aerospace Engineering

Supervisor (s):

Prof. Dr. Mohamed Madbouli Abdelrahman

Examiners:

Prof. Dr. Mohamed Madbouli Abdelrahman (Thesis main advisor)
Prof. Dr. Galal Bahgat Salem (Internal examiner)
Prof. Dr. Muhmmad Muhmmad El-Refaee (External examiner)

Dept. of Mechanical Power, Faculty of Engineering, Misr University for Science and

Technology (MUST)

Title of Thesis:

OPTIMUM CONFIGURATION OF WING-TAIL TANDEM ARRANGEMENT AT LOW REYNOLDS NUMBER

Key Words:

Tandem arrangement; Low-Reynolds number airfoil; Laminar separation bubbles, Stagger effect; Incompressible viscous flow.

Summary:

The optimum configuration of 2D wing and tail of a certain T-tail UAV placed in tandem arrangement and operate at low Reynolds number is discussed numerically. Total lift-to-drag ratio is studied at different tail configurations relative to the wing in order to get the maximum total lift-to-drag ratio which is corresponding to maximum range of UAV. The numerical simulation is performed using ANSYS FLUENT 18.0 software package while the mesh is generated by PointWise 18.1 software package. Examination of PointWise 18.1 software in dealing with meshing at different cases of flow and airfoils is performed. SST k-ω turbulence model is the suitable model for low Reynolds number tandem wings. The outcomes are validated against the available experimental data.

Disclaimer

I hereby declare that this	s thesis is my o	wn original	work and	that no	part of it	has been
submitted for a degree q	ualification at a	any other uni	versity or	institute	.	

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Muhammad Shaaban Eissa Abul-Ela	Date:
Signature:	

Dedication

Dedicated to my loyal wife Dr. Omnia Rabie and my kids Oumair and Aisha

Acknowledgement

First, all gratitude is due to Almighty Allah for providing me the blessings to complete this work.

I would like to thank everyone who provides and supports me throughout this thesis. I would like to express my deepest gratitude and sincere thanks to **Prof. Dr. Mohamed Madbouli** due to his instructive supervision, continuous guidance, and valuable instructions.

Also, the effort in revising and editing this thesis to be worked out in this pattern cannot be ignored, So, special thanks to **Prof. Dr. Galal Bahgat** for his advice and best efforts. He revised this thesis piece by piece.

I would like also to thank **Prof. Dr. Muhammad Muhammad Alrefaee** for his technical pieces of advice and for his help in getting this thesis in better form.

A special thanks to **Dr. Muhammad Mostafa Zaki** for his support and help me in researching, learning, and using various software packages. He is one of the primary foundation stones in the thesis building, and I considered him as my "elder brother". He shared his experience in scientific researches with me.

I would like to thank **Eng. Alaa Muhammad Khedr** and Eng. Hossam Hassan Abul-Ela for their encouragement and support all the time.

Finally, I would like to thank my parents for their patients and motivation.

Muhammad Shaaban

Table of Contents

Disclaimer	i
Dedication	ii
Acknowledgement	iii
Table of Contents	iv
List of Tables	vii
List of Figures	viii
List of Symbols, Abbreviations, and Nomenclature	xi
Abstract	
Chapter 1: Introduction	
1.1 Historical Background	
1.1.1 Tandem Wing Configuration	1
1.1.2 Small Unmanned Aerial Vehicles (UAV's)	2
1.2 Boundary Layer at Low-Re Flow	4
1.3 Thesis Organization	5
Chapter 2: Literature Review	6
2.1 Studies Based on Experimental Tests	6
2.2 Studies Based on CFD Numerical Methods	9
2.3 Summary	18
2.4 Current Work	18
Chapter 3: Governing Equations	19
3.1.1 Reynolds-Averaged Navier-Stokes (RANS) Equations	19
3.1.2 Spalart-Allmaras model	20
3.1.2.1 Model principles	20
3.1.2.2 Applications	20
3.1.2.3 Limitations	20
3.1.3 k-ε model	21
3.1.3.1 Model principles	21
3.1.3.2 Applications	21
3.1.3.3 Limitations	21
٣,١,٤ k-ω model	22
3.1.4.1 Model principles	22
3.1.4.2 Applications	22
3.1.4.3 Limitations	22

3.1.5 SST-k-ω model	22
3.1.5.1 Model principles	22
3.1.5.2 Applications	23
3.1.5.3 Limitations	23
3.1.6 SST-γ-Re _θ transition model	23
3.1.6.1 Model principles	24
3.1.6.2 Applications	24
3.1.6.3 Limitations	24
3.2 Turbulence Models Summary	25
Chapter 4: Validation of Methodology	26
4.1 Case Study 1: NACA 0012 Airfoil	26
4.1.1 Meshing	26
4.1.2 Results	26
4.2 Case Study 2: Fx63-137 Airfoil	28
4.2.1 Meshing	28
4.2.1.1 Mesh Independence Analysis (MIA)	29
4.2.2 Results	
4.3 Thesis Case Study: 2D Single Wing (NACA 23012)	31
4.3.1 Meshing	31
4.3.1.1 Boundary Layer Calculations	33
4.3.1.2 Mesh Independence Analysis (MIA)	33
4.3.1.3 Meshing Quality	34
4.3.2 Solution Setup	36
4.3.3 Results	37
Chapter 5: Tandem Configuration Numerical Validation	40
5.1 Meshing	40
5.1.1 Boundary Layer Calculations	40
5.1.2 Structured Grid	41
5.1.3 Mixed Grid	42
5.1.4 Meshing Quality	43
5.1.5 Mesh Independence Analysis (MIA)	45
5.2 Results	45
5.3 Flow Visualization	47
5.3.1 Streamlines Over the Airfoils	47
5.3.2 Velocity and Pressure Distribution Over the Airfoils	51
5.3.3 Pressure Coefficient	54
5.4 Results Conclusion	55

Chapter 6: Parametric Study of Tandem Arrangement	59
6.1 $[C_1/C_d]_{max}$ at $D = 0^o$	59
6.2 $[C_1/C_d]_{max}$ at $D = -0.85^{\circ}$	61
6.3 $[C_1/C_d]_{max}$ at D = -1.7°	63
6.4 $[C_l/C_d]_{max}$ at D = -2.55°	65
6.5 $[C_1/C_d]_{max}$ at D = -3.4°	67
6.6 Summary of The Parametric Study	69
6.7 Results Comparison	71
6.8 Flow Visualization	74
6.8.1.1 Wing Pressure coefficient	74
6.8.1.2 Tail Pressure Coefficient	74
6.8.1.3 Streamlines over the Wing	75
6.8.1.4 Streamlines over the Tail	76
6.8.1.5 Velocity Distribution	77
6.8.1.6 Pressure Distribution	77
Chapter 7: Conclusions and Future Work	78
7.1 Thesis Summary	78
7.2 Concluding Remarks	79
7.3 Recommendations for the Future Work	80
References	81

List of Tables

Table 1-1: Wing configuration types	1
Table 1-2: Tandem Configuration Definitions [6]	2
Table 2-1: Various experimental studies for tandem airfoils with specific parameters	[12]7
Table 3-1: SA coefficients	20
Table 3-2: Coefficients for low Reynolds number k-ε models	21
Table 3-3: k-ω model coefficients	22
Table 3-4: SST k-ω model coefficients	23
Table 3-5: SST k-ω functions	23
Table 3-6: Intermittency equation constants	24
Table 3-7: Turbulence Model Summary	25
Table 4-1: F. Chen model vs. Studied models for a single airfoil	
Table 4-2: Mesh Independence Analysis for Fx63-137 single airfoil	
Table 4-3: Boundary Conditions Types of NACA 23012 2D Wing	32
Table 4-4: MIA for single NACA 23012 2D Wing	33
Table 4-5: C ₁ and C _d validation for NACA 23012 single airfoil	37
Table 5-1: Boundary Layer Thickness Calculations for Tandem Wings	40
Table 5-2: Comparison among grids at $\alpha = 0^{\circ}$	42
Table 5-3: C ₁ and C _d validation for NACA 23012 airfoil (wing) in tandem	45
Table 5-4: C ₁ and C _d validation for NACA 23012 airfoil (tail) in tandem	46
Table 6-1: Max lift-to-drag ratio over the range of stagger and gap at $D = 0^{\circ}$	59
Table 6-2: Max lift-to-drag ratio over the range of stagger and gap at $D = -0.85^{\circ}$	
Table 6-3: Max lift-to-drag ratio over the range of stagger and gap at $D = -1.7^{\circ}$	
Table 6-4: Max lift-to-drag ratio over the range of stagger and gap at $D = -2.55^{\circ}$	65
Table 6-5: Max lift-to-drag ratio over the range of stagger and gap at $D = -3.4^{\circ}$	67

List of Figures

Figure 1-1: Stagger, Gap, and Decalage Definition	2
Figure 1-2: Condor UAV [1]	3
Figure 1-3: Flight vehicles Reynolds number range against their masses [7]	3
Figure 1-4: Time-averaged features of a transitional separation bubble [10]	
Figure 2-1: Airfoil Configuration [11]	6
Figure 2-2: flow development for (a) $\alpha = 5^{\circ}$, (b) $\alpha = 10^{\circ}$, (c) $\alpha = 15^{\circ}$, (d) $\alpha = 30^{\circ}$ [12]	7
Figure 2-3: Experiment setup [18]	8
Figure 2-4: Experiment setup [19]	9
Figure 2-5: ICEM Computational grid used for tandem-airfoil [21]	. 10
Figure 2-6: Canard-Wing parameters definitions [22]	. 10
Figure 2-7: Free Form Deformation (FFD) and control points of the geometry model [22]	.11
Figure 2-8: Definition of the studied parameters [24]	. 12
Figure 2-9: computational domain and 2D structured grid [29]	. 13
Figure 2-10: Definition of d_{12} , h , θ and ϕ_{12} illustrated [36]	. 15
Figure 2-11: 1,320×1,120 Cartesian grid for the IBCNSS [36]	
Figure 2-12: Tandem airfoil geometrical parameters [37]	
Figure 2-13: ICEM mesh of tandem NACA 0012 airfoils in ground effect ($\alpha = 5^{\circ}$) [40]	. 17
Figure 2-14: Zoomed mesh of tandem NACA 0012 airfoils in ground effect ($\alpha = 5^{\circ}$) [40]	. 17
Figure 4-1: Close view of NACA 0012 grid construction	. 26
Figure 4-2: Far view of NACA 0012 grid construction	
Figure 4-3: NACA 0012 lift coefficient vs angle of attack	
Figure 4-4: NACA 0012 drag coefficient vs angle of attack	. 27
Figure 4-5: Close View of Fx63-137 single airfoil mesh	. 29
Figure 4-6: Far View of Fx63-137 single airfoil mesh	. 29
Figure 4-7: C ₁ Validation of Fx63-137 airfoil at Re = 220,000	.30
Figure 4-8: C _d Validation of Fx63-137 airfoil at Re = 220,000	
Figure 4-9: C ₁ Validation of Fx63-137 airfoil using SST-k-ω model at Re = 220,000	
Figure 4-10: NACA 23012 grid (close view)	.32
Figure 4-11: NACA 23012 grid (far view)	.32
Figure 4-12: Boundary conditions of single NACA 23012 2D wing	.32
Figure 4-13: C_1 MIA for single NACA 23012 2D wing ($\alpha = 0^{\circ}$)	
Figure 4-14: C_d MIA for single NACA 23012 2D wing ($\alpha = 0^{\circ}$)	
Figure 4-15: Aspect ratio distribution of NACA 23012 2D Wing	.35
Figure 4-16: Skewness distribution of NACA 23012 2D Wing	
Figure 4-17: Maximum included angle distribution of single NACA 23012 2D Wing	.36
Figure 4-18: C ₁ Validation of single NACA 23012 2D wing at Re = 58,300	
Figure 4-19: C _d Validation of single NACA 23012 2D wing at Re = 58,300	
Figure 4-20: C ₁ and C _d Validation of single NACA 23012 2D wing at Re = 58,300	
Figure 5-1: PW close view of structured grid of tandem wings ($\alpha = 0^{\circ}$, Case I)	
Figure 5-2: PW far view of structured grid of tandem wings ($\alpha = 0$ °, Case I)	
Figure 5-3: ICEM structured grid of tandem wings ($\alpha = 0^{\circ}$, Case I)	
Figure 5-4: PW close view of mixed grid of tandem wings ($\alpha = 0^{\circ}$, Case I)	
Figure 5-5: PW far view of mixed grid of tandem wings ($\alpha = 0^{\circ}$, Case I)	
Figure 5-6: Experimental data of tandem NACA 23012 wings at Re = 58,300 [11]	