

# Culture and Susceptibility of Levofloxacin Resistant H.pylori

#### **Thesis**

Submitted for Partial Fulfillment of Master Degree in Gastroenterology

#### By Ahmed Medhat Youssef Ibrahim Youssef

M.B.B.Ch., Faculty of Medicine Tanta University

#### **Supervised by**

### **Dr. Sameh Mohamed Fahiem Ghaly**

Professor of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine – Ain Shams University

### Dr. Hany Ali Hussien Abd El-Rahman

Assistant Professor of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine – Ain Shams University

### **Dr. Mohamed Osama Aly Aly**

Lecturer of Internal Medicine, Hepatology and Gastroenterology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020



سورة البقرة الآية: ٣٢

# Acknowledgment

Allah, all praise is due to You as befits the majesty of Your countenance and the greatness of Your authority.

It is my pleasure to express my sincere thanks and deepest gratitude to **Prof. Dr.Sameh Mohamed Fahiem Ghaly,** Professor of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine Ain Shams University, for giving me the honor to work under her supervision, and for her effective help, and indispensable directions. Her encouragement and careful revision were the major factors that led to the accomplishment of this thesis

It is a great honor to express my deepest gratitude and appreciation to **Dr. Hany Ali Hussien Abd El-Rahman,** Assistant, Professor of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine Ain Shams University, for his meticulous supervision, constant guidance & support. He did every effort & spared no time to offer his help up to the utmost.

I would like to express my sincere thanks, and great respect to **Dr.**Mohamed Osama Aly Aly, Lecturer of Internal Medicine, Hepatology and Gastroenterology, Faculty of Medicine Ain Shams University, for his unlimited help, advice, fruitful guide, meticulous effort in every single detail and continuous encouragement throughout the study.

I would like to thank my friends & colleagues for accepting nothing less than excellence from me. Last but not the least, I would like to thank my family: my parents and to my brothers and sisters for supporting me spiritually throughout writing this thesis and my life in general



# List of Contents

| Title Page N                                                            | 10. |
|-------------------------------------------------------------------------|-----|
| List of Abbreviations                                                   | 5   |
| List of Tables                                                          | 7   |
| List of Figures                                                         | 8   |
| Introduction                                                            | 1   |
| Aim of the Work                                                         | 3   |
| Review of Literature                                                    |     |
| H.pylori Signs, Symptoms and Microbiology                               | 4   |
| H.pylori and its Relation to Peptic Ulcer Disease                       | 17  |
| H.pylori and its Relation to Other Disease                              | 30  |
| H.pylori Diagnosis and Protocols of Treatment                           | 64  |
| H.pylori Antibiotics Resistance as Regard to Mechanism and How to Treat |     |
| Patients and Methods                                                    | 89  |
| Results                                                                 | 94  |
| Discussion                                                              | 98  |
| Summary1                                                                | 06  |
| Conclusion                                                              | 08  |
| Recommendations                                                         | 09  |
| References                                                              | 10  |
| Arabic Summary                                                          | .—  |

## List of Abbreviations

| Abb.         | Full term                               |
|--------------|-----------------------------------------|
| *            | Significant (p<0.05)                    |
|              | Highly significant (p<0.001)            |
|              | Alkaline phosphatase                    |
|              | Body Mass Index                         |
|              | Culture and Sensitivity                 |
|              | Cytotoxin associated gene A             |
| <del>-</del> | Cytotoxin associated gene L             |
| =            | Campaylobacter Like Organism            |
|              | Chronic Obstructive Pulmonary Disease   |
|              | C-Reactive Protein                      |
| CSR          | Central Serous Retinopathy              |
|              | Chronic Spontaneous Urticaria           |
| CVD          | Cardio Vascular Disease                 |
| DLBCL        | Diffuse Large B Cell Lymphoma           |
| DM           | Diabetes Mellitus                       |
| EIA          | Enzyme Immuno Assay                     |
| ERK          | Extra-cellular signal-regulated kinases |
| E-Test       | Epsilometer Test                        |
| FBS          | Fasting Blood Sugar                     |
| FISH         | Fluornascence in-situ Hybridisation     |
| Fla A        | Flagellins A                            |
| Fla B        | 9                                       |
|              | Gastro-esophagus Reflux Disease         |
| GGT          | Gamma-Glutamyl Transpeptidase           |
| Hb           | -                                       |
| HR           |                                         |
| HTN          | • •                                     |
|              | Immuno Chromatography                   |
| IDA          | Iron Difficiency Anemia                 |

# List of Abbreviations cont...

| Abb.   | Full term                                 |
|--------|-------------------------------------------|
| I.e. C | Immuno-globuling C                        |
| IL     | Immuno-globulins G                        |
|        |                                           |
|        | International Normalized Ratio            |
|        | Idiopathic Thrompocytopenic Purpura       |
|        | Low Density Lipoprotein                   |
|        | Lipopolysaccarides                        |
| MAPK   | Mitogen-activated Protein kinase          |
| MS     | Multiple Sclerosis                        |
| NAP    | Neutrophil-Activating protein             |
| NMO    | Neuromyelitis Optica                      |
| NSAID  | Non-steroidal Anti-inflammatory Drugs     |
| OAL    | Ocular Adenxal Lymphoma                   |
|        | Outer inflammatory protein A              |
| PCR    | Polymerase Chain Reaction                 |
| PE     | Pre-Eclampcia                             |
|        | Pseudomyxoma Pertonitis                   |
|        | Peptide Nucleic Acid                      |
|        | Proton Pump Inhibitor                     |
|        | Receptor-Like Protein Tyrosin Phosphatase |
|        | Sialic acid binding adhesion              |
| Th     | <del>-</del>                              |
| TLC    | Total Leukocytic count                    |
|        | Toll Like Receptors                       |
|        | Tumor Necrosing Factor                    |
|        | Vacuolating Toxin A                       |

# List of Tables

| Table No.  | Title                                                                                                   | Page No. |
|------------|---------------------------------------------------------------------------------------------------------|----------|
| Table (1): | H.pylori Virulence Factors and Functions.                                                               |          |
| Table (2): | Diagnostic methods for H.pylori                                                                         | 68       |
| Table (3): | H.pylori Treatment Regimens                                                                             | 76       |
| Table (4): | Comparison between PPI and P-CABs                                                                       | 80       |
| Table (5): | Descriptive criteria of participant acc<br>to age, BMI, chemistry tests and co<br>blood count component | omplete  |
| Table (6): | H.pylori sensitivity and resistant different antibiotics used in the study.                             |          |
| Table (7): | The Most sensitive antibiotics a H.pylori.                                                              | O        |

# List of Figures

| Fig. No.     | Title                                                                                                 | Page No. |
|--------------|-------------------------------------------------------------------------------------------------------|----------|
| Figure (1):  | H.pylori shape and microbiology                                                                       | 7        |
| Figure (2):  | Mechanism of H.pylori Pathogenicty.                                                                   | 19       |
| Figure (3):  | H.pylori and pathogenesis gastroenterology diseases                                                   |          |
| Figure (4):  | H.pylori and its pathogenesis in disorder                                                             |          |
| Figure (5):  | H.pylori and its relation to hematolodisease.                                                         | _        |
| Figure (6):  | H.pylori and its relation to gastric car                                                              | ncer43   |
| Figure (7):  | H.pylori and its relation to Cardiovas disease.                                                       |          |
| Figure (8):  | H.pylori resistance to antibiotics                                                                    | 85       |
| Figure (9):  | The Most sensitive antibiotics ag<br>H.pylori                                                         |          |
| Figure (10): | Percentage of sensitivity and resistar most sensitive antibiotics against H.p. according to our study | oylori   |

#### **ABSTRACT**

**Background:** Antibiotic resistance in Helicobacter pylori is the major cause of eradication failure. Prevalence of H.pylori antibiotic resistance is increasing worldwide, and it is the main factor affecting efficacy of current therapeutic regimens. Our aim is to investigate H.pylori resistant patients toward Levofloxacin and detect the most effective antibiotic in eradication of H.pylori.

**Objective:** To investigate H.pylori resistant patients toward Levofloxacin including regimens and to detect the most effective antibiotic in H.pylori eradication.

**Patients and Methods:** The present study aimed to investigate the Susceptibility of Levofloxacin Resistant H.pylori in patients who had been diagnosed and received any regimen including Levofloxacin and still signs and symptoms of H.pylori infection not releaved and after proper time of stoppage of PPI and antibiotics H.pylori Ag in stool still positive at the period from January 2019 to February 2020.

**Results:** In the present study we found a wide spectrum of resistance to rates of H. pylori, from nearly negligible rates of Rifampicin (0%), Imipenem (0%), Cefotaxime (2%), Tetracycline (6%), Doxycycline(10%), and Amoxicillin(38%). To high rates resistance to Metronidazole (100%), Erythromycin (72%), Clarithromycin (68%), Azithromycin (60%), Ciprofloxacin (52%), and Levofloxacin (48%).

Conclusion: Helicobacter pylori is the most common chronic bacterial infection in humans. Antibiotic resistance is a major issue nowadays. Prior use of macrolide antibiotics or metronidazole appears to increase the risk of H. pylori resistance. Clarithromycin resistance appears to be an "absolute" condition that can not be overcome by increasing the macrolide dose. Levofloxacin resistance seems to be increasing. Culture and susceptibility should be done before starting second line treatment.

**Keywords:** Cytotoxin associated gene A, cytotoxin associated gene L, campaylobacter like organism



### Introduction

H.pylori is one of the most common bacterial infections in humans that affect most populations throughout the world (Hu, Zhu, and Lu 2017).

The story of H. pylori and the recognition of its major role in gastric pathology originated from simple histological observations of the spiral organisms in the gastric mucosa of men and animals. W. Jaworski, Professor of Medicine at the Jagiellonian University of Cracow, Poland was first to de scribe the spiral organisms in the sediment of gastric washings obtained from humans. He noticed among the other rods, a bacterium with a characteristic spiral appearance and named it, Vibrio rugula, suggesting for the first time its possible pathogenic role in gastric diseases (Konturek 2003).

Marshall developed Warren's idea that H. pylori infection is associated with gastritis and duodenal ulcers and this was then confirmed independently by Rollason et al. and Steer, who reported that patients with these diseases were more often infected with spiral bacteria than healthy controls (Hagymási and Tulassay, 2014).

The discovery of h.pylori and of its role in peptic ulcer breakthrough disease constituted a in the field gastroenterology. Eradication treatment have been developed during the last 20 years leading to decrease in h.pylori-related

1



peptic ulcer disease and in the prevelence of the infection in the Western world. However, the success of these treatment s is now compromised by the increase in antimicrobal resistance of h.pylori (Tveit et al., 2011).

Antibiotics are important ingredients in all of h.pylori eradication regimens. However, antibiotics resistance is clarithromycin common. Primary resistance to and metronidazole is common in our locality and significantly affect the effectiveness of standard eradication therapy (Abadi et al., 2012).

Levofloxacin based therapies are recently found to be effective alternative therapy for h.pylori eradication, and is better than traditional therapy. However, recent studies showed that levofloxacin based therapies showed resistant cases (Hu et al., 2017).

In our study we are trying to find the most effective antibiotic regimen in readdication of levofloxacin resistant H.pylori.



## AIM OF THE WORK

The aim of study is to investigate H.pylori resistant patients toward Levofloxacin including regimens and to detect the most effective antibiotic in H.pylori eradication.

### Chapter 1

# H.PYLORI SIGNS, SYMPTOMS AND MICROBIOLOGY

Helicobacter pylori, previously known as Campylobacter pylori, is a Gram-negative, microaerophilic bacterium usually found in the stomach. It was identified in 1982 by Australian doctors Barry Marshall and Robin Warren, who found that it was present in a person with chronic gastritis and gastric ulcers, conditions not previously believed to have a microbial cause. It is also linked to the development of duodenal ulcers and stomach cancer. However, over 80% of individuals infected with the bacterium are asymptomatic, and it may play an important role in the natural stomach ecology (*Reshetnyak and Reshetnyak*, 2017).

More than 50% of the world's population has H. pylori in their upper gastrointestinal tracts. Infection is more common in developing countries. H. pylori's helical shape (from which the genus name derives) is thought to have evolved to penetrate the mucoid lining of the stomach (*Thung et al.*, 2016).

#### Signs and symptoms

1. Asymtomatic infection: Up to 90% of people infected with H. pylori never experience symptoms or complications (Keshavarz Azizi Raftar et al., 2015).

2. Symtomatic infection: Acute infection may appear as an acute gastritis with abdominal pain (stomach ache) or nausea. Where this develops into chronic gastritis, the symptoms, if present, are often those of nonulcer dyspepsia: stomach pains, nausea, bloating, belching, and sometimes vomiting or black stool (Aishwarya et al., 2016).

Individuals infected with H. pylori have a 10 to 20% lifetime risk of developing peptic ulcers and a 1 to 2% risk of acquiring stomach cancer. Inflammation of the pyloric antrum is more likely to lead to duodenal ulcers, while inflammation of the corpus (body of the stomach) is more likely to lead to gastric ulcers and gastric carcinoma. However, H. pylori possibly plays a role only in the first stage that leads to common chronic inflammation, but not in further stages leading to carcinogenesis. A meta-analysis conducted in 2009 concluded the eradication of H. pylori reduces gastric cancer risk in previously infected individuals, suggesting the continued presence of H. pylori constitutes a relative risk factor of 65% for gastric cancers; in terms of absolute risk, the increase was from 1.1% to 1.7% (*Hafez et al.*, 2011).

Helicobacter pylori has been associated with colorectal polyps and colorectal cancer. It may also be associated with eye disease. Pain typically occurs when the stomach is empty, between meals, and in the early morning hours, but it can also occur at other times. Less common ulcer symptoms include nausea, vomiting, and loss of appetite. Bleeding can also occur;

prolonged bleeding may cause anemia leading to weakness and fatigue. If bleeding is heavy, hematemesis, hematochezia, or melena may occur (*Keshavarz Azizi Raftar et al.*, 2015).

#### **Microbiology**

Morphology: Helicobacter pylori is a helix-shaped (classified as a curved rod, not spirochaete) Gram-negative bacterium about 3 μm long with a diameter of about 0.5μm. H. pylori can be demonstrated in tissue by Gram stain, Giemsa stain, haematoxylin–eosin stain, Warthin–Starry silver stain, acridine orange stain, and phase-contrast microscopy. It is capable of forming biofilms and can convert from spiral to a possibly viable but nonculturable coccoid form (*Tveit et al.*, 2011).

Helicobacter pylori has four to six flagella at the same location; all gastric and enterohepatic Helicobacter species are highly motile owing to flagella. The characteristic sheathed flagellar filaments of Helicobacter are composed of two copolymerized flagellins, FlaA and FlaB (*Tveit et al.*, 2011).