

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Comparative Study of the Central Corneal Thickness in Healthy Individuals and Diabetic Patients with and without Retinopathy using Anterior Segment Optical Coherence Tomography

Thesis

Submitted for Partial Fulfillment of Master Degree in Ophthalmology

By

Hagar Mohamed Alsayed Mohamed Faisal

M.B., B.Ch Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Tamer Fathi Fl-Mekkawi

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Hazem Mohamed Omar Mohamed Rashed

Associate Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Hisham Samy Saad Eldin

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Ouran-HD com I upo upo

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Tamer Fathi El-Mekkawi**, Professor of Ophthalmology - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Hazem Omar Rashed, Assistant Professor of Ophthalmology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Hisham Samy Saad Eldin,** Lecturer of Ophthalmology, Faculty of
Medicine, Ain Shams University, for his great help,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Hagar Mohamed Alsayed Mohamed Faisal

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	3
Revie of Literature	
Anatomy of Cornea	4
Diabetes Mellitus	10
Anterior Segment OCT	24
Patients and Methods	35
Results	41
Discussion	47
Conclusion	53
summary	54
References	
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	Demographic data of each group and tested	•
Table (2):	Mean and the range of RBS and Hain groups A, B and C.	
Table (3):	CCT in groups A, B and C	45

List of Figures

Fig. No.	Title Pag	ge No.
Figure (1):	Anatomy of cornea	4
Figure (2):	Layers of cornea	5
Figure (3):	Histopathology of corneal epithelium and	
_	Bowman's membrane	6
Figure (4):	Electron Microscope image of a corneal	
	graft, after researchers injected air in it, to	
	separate the different layers of the cornea	9
Figure (5):	More totrtous and less branching of the	
	corneal subasal nerve plexus pattern	
	with increasing severity of diabetic	
	retinopathy	20
Figure (6):	An AS-OCT image of a patient with	
	granular dystrophy	28
Figure (7):	A TD AS-OCT image demonstrating	
	localized Descemet's membrane	
	detachment adjacent to the wound and	
	internal wound gaping that was not	
	detected in slit-lamp examination	31
Figure (8):	An AS-OCT image of precut donor cornea	
	for Descemet's stripping automated	
	endothelial keratoplasty (DSAEK) taken	
	for evaluation of thickness of graft donor	
	tissue	
Figure (9):	AS-OCT NIDEK RS-3000 Advance	38
Figure (10):	Radial corneal map of diabetic patient	
	with central corneal thickness calculated	
	on the map using ASOCT NIDEK RS-	
	3000 Advance.	
Figure (11):	Mean age in groups A, B and C	
Figure (12):	Eye tested in groups A, B and C	
Figure (13):	Mean RBS in group A, B and C	
Figure (14):	Mean HbA1c in group A, B and C	
Figure (15):	CCT in groups A, B and C	$\dots 46$

List of Abbreviations

Full term Abb. **AC.....** Anterior chamber **AGEs**Advanced glycation end products **AS-OCT**.....Anterior segment OCT **CCT**.....Central corneal thickness CXL Corneal collagen crosslinking **DALK**.....Deep anterior lamellar keratoplasty **DED**..... Dry eye disease **DM**..... Descemet's membrane **DM**..... Diabetes mellitus **DR** Diabetic retinopathy **DSAEK.....** Descemet's stripping automated endothelial keratoplasty **ECD**.....Endothelial cell density ECM.....Extracellular matrix FD- OCT.....Fourier- domain OCT IOP.....Intraocular pressure LASIKLaser in-situ keratomileusis MMPs.....Metalloproteinases **NDR**Nondiabetic retinopathy **NPDR.....**Nonproliferative diabetic retinopathy **OCT.....**Optical coherence tomography **OSSN**Ocular surface squamous neoplasia **PDR.....** Proliferative diabetic retinopathy **PRP**.....Panretinal laser photocoagulation SD.....Standard deviation TD- OCT Time- domain OCT **UBM**...... Ultrasound biomicroscopy

Introduction

orldwide, the incidence of type II diabetes mellitus (DM) is increasing, reaching epidemic proportions in developing countries. The disease entity is characterized by hyperglycaemia and the development of micro- and macrovascular disorders, leading to functional and metabolic disorders in several organs.

In addition to well-recognized ocular complications of DM, such as diabetic retinopathy, cataract progression, and neovascular glaucoma, DM impacts multiple ocular tissues including the cornea as chronic abnormal glucose metabolism leads to corneal changes that have been reported in the epithelial, stromal, and endothelial layers.

Stromal changes include structural alterations produced by collagen crosslinking. Epithelial manifestations include recurrent corneal erosions, punctate keratopathy, persistent epithelial defect and increased susceptibility to ulceration. Diabetic neurotrophic keratopathy which results in endothelial cell dysfunction, can be one of the components of diabetic polyneuropathy (*Kumar et al.*, 2018).

Endothelial cells are proven to have morphologic abnormalities such as decrease in endothelial cell density (ECD) and hexagonality and increase in polymegathism, pleomorphism, and central corneal thickness (CCT). Damaged corneal endothelium function unbalances stromal hydration and

increases its thickness. Some studies suggest that increased CCT could be one of the earliest changes in the diabetic eye and that there is a positive association between CCT and the degree of diabetic retinopathy (Norvydaite et al., 2014).

It is thought that diabetes reduces the activity of Na-K ATPase of corneal endothelium and this increases the hydration of the corneal stroma and then corneal thickness is increased (Altay et al., 2016).

Optical coherence tomography (OCT) is a non-contact optical signal acquisition and processing device that provides magnified, high resolution cross-sectional images of ocular tissues. Development of anterior segment OCT (AS-OCT) offers the benefits of fine resolution and noninvasive examination of the anterior segment anatomy to the depth of the iris plane. This imaging device has been utilized for investigating a variety of corneal and anterior segment diseases (Jancevski and Foster, *2010*).

Technological advances toward three-dimensional visualization broaden the scope of AS-OCT in ophthalmologic evaluation. The AS-OCT is a valuable imaging tool whose use in research and clinical practice will continue to expand our knowledge and management of various ophthalmic conditions (Jancevski and Foster, 2010).

AIM OF THE WORK

ssessment of the central corneal thickness in diabetic patients with and without diabetic retinopathy using AS-OCT.

Chapter (1) ANATOMY OF CORNEA

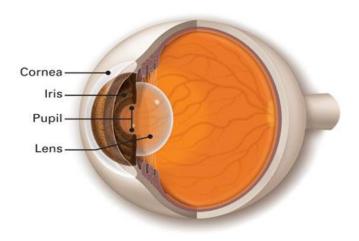


Figure (1): Anatomy of cornea (DelMonte and Kim, 2011).

The cornea is a transparent avascular tissue that acts as a structural barrier and protects the eye against infections as shown in [figure 1] (*DelMonte and Kim*, 2011). Along with the tear film, it provides proper anterior refractive surface for the eye.

The cornea is horizontally oval, measuring 11–12 mm horizontally and 9–11 mm vertically (*Fares et al., 2012*). It is convex and aspheric. The anterior curvature is 7.8 mm and posterior curvature is about 6.5 mm. Cornea contributes to about 40–44 D of refractive power and accounts for approximately 70% of total refraction. The refractive index of the cornea is 1.376. There is a gradual increase in thickness from central cornea to the periphery (*Feizi et al., 2014*).

The cornea is made up of cellular and acellular components. The cellular components include the epithelial cells, keratocytes, and endothelial cells. The acellular component includes collagen and glycosaminoglycans. The epithelial cells are derived from epidermal ectoderm. The keratocyte and endothelial cells are derived from neural crest. The corneal layers include epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium as shown in [Figure 2]. Recently, a layer of cornea (Dua layer) which is well defined, acellular in pre-Descemet's cornea is getting attention with the development of lamellar surgeries (*Dua et al., 2013*).

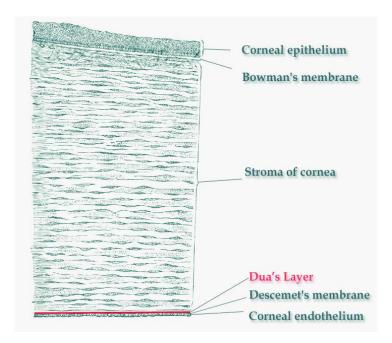


Figure (2): Layers of cornea (Dua et al., 2013).

The corneal epithelium is composed fairly uniformly of 5–7 layers of cells. It is about 50 µ in thickness. The epithelium