

Predictors of Hemodynamic Changes after Carotid Artery Stenting

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

Presented By

Omar Mohamed Abdel-Megeed Hashim M.B. B.Ch.ain shams university

Prof. Dr. Hany Mahmoud Zaki el-Dine

Professor of Neurology Faculty of Medicine – Ain Shams University

Assistant Prof. Dr. Mohamed Khaled Elewa

Assistant Professor of Neurology Faculty of Medicine – Ain Shams University

Dr. Tamer Mahmoud El Sayed Roushdy

Lecturer in Neurology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, thanks GOD, the merciful, the beneficent for helping me during this work.

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Hany Mahmoud Zaki el-Dine,** Professor of Neuropsychiatry, Faculty of Medicine, *Ain Shams* University for his valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts he devoted in the supervision of this study.

I'll never forget, how co-operative was **Assistant Prof. Dr. Mohamed Khaled Elewa**, Assistant Professor of Neuropsychiatry, Faculty of Medicine, *Ain Shams* University, also he was encouraging all the time. It is honorable to be supervised by him.

I would like also, to express my great thanks to **Dr. Tamer Mahmoud El Sayed Roushdy**, Lecturer of Neuropsychiatry, and Faculty of Medicine – *Ain Shams* University. His valuable advises and continuous support facilitated completing this work.

I would like to thank all the staff members of the Neuropsychiatry department.

Finally, I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life. my wife SHIMA my sons YOUSEF & EYAD&LOJY.

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	9
Abstract	10
Introduction	1
Hypothesis	14
Aim of the Work	15
Review of Literature	
Anatomy of Carotid Artery	16
Carotid Endarterectomy versus carotid stenting	23
Hemodynamic changes during Carotid artery sten	ating42
Patients and Methods	50
Results	61
Discussion	92
Limitations	102
Conclusion	103
Recommendations	104
Summary	105
References	110
Arabic Summary	

List of Abbreviations

Abb. Full term

ACT	Asymptomatic Carotid Trial	
CAD	Coronary artery deices	
CAS	Carotid artery stenting	
CCA	Common carotid artery	
CEA	carotid endarterectomy	
CREST	Carotid Revascularization versus Stenting Trial	
CSTC	The Carotid Stent Trialists Collaboration	
DBP	Diastolic blood pressure	
DM	Diabetes millets	
DW-MRI	Diffusion weighted magnetic resonance image	
ERMED	Egyptian Railway Medical Center	
ESVS	European Society for Vascular Surgery	
EVA-3S	Endarterectomy Versus Angioplasty	
HDI	Hemodynamic instability	
НІ	Hemodynamic instability	
HR	Heart rate	
HRR	Heart rate recovery	
HTN	Hypertension	

List of Abbreviations cont...

Abb. Full term

ICA	Internal carotid artery	
ICSS	International Carotid Stenting Study	
MCA	Middle cerebral artery	
MI	Myocardial infarction	
MMD	Moyamoya disease	
NASCET	North American Symptomatic Carotid Endarterectomy Trial	
SBP	Systolic blood pressure	
DBP	Diastolic blood pressure	
SPACE	E Stent-Protected Angioplasty versus Carotid Endarterectomy	
STA	Superficial temporal artery	
STA-ACA	Superficial temporal artery to anterior cerebral artery	
STA-MCA	Superficial temporal artery to middle cerebral artery	
TIAs	Transient ischemic attacks	
TTT	Treatment	
NIHSS	National Institutes of Health Stroke Scale	

List of Tables

Table No.	Title	Page No.	
Table (1):	ESVS Recommendations for interventions in symptomatic patients		
Table (2):	ESVS Recommendations for Interventions in asymptomatic patients		
Table (3):	Comparison between Hemodevents regarding to Demographic d	•	
Table (4):	Comparison between Hemodevents regarding to risk factors	•	
Table (5):	Comparison between Hemodevents regarding to plaque characters	•	
Table (6):	Comparison between Hemodevents regarding to the characteristenting	istics of	
Table (7):	Comparison between Hemodevents regarding to HR		
Table (8):	Comparison between Hemodichanges regarding to SBP		
Table (9):	Comparison between Hemodevents regarding to DBP	v	
Table (10):	Comparison between Hemodynamic with different parameters as druchest pain and pulmonary edema	ıgs and	
Table (11):	Correlation between of age with pe change in HR, SBP and D hemodynamic events group	BP in	

List of Tables cont...

Table No.	Title	Page No.
Table (12):	Correlation between of stent diamet percent of dilatation with percent change in HR, SBP and DE hemodynamic events group	ent of BP in
Table (13):	Risk Factor Analysis of percent of of HR immediately after stenting	•
Table (14):	Risk Factor Analysis of percent of of SBP immediately after stenting	•
Table (15):	Risk Factor Analysis of percent of of DBP immediately after stenting	-

List of Figures

Fig. No.	Title	Page No.	
Figure (1):	Diagram of types of aortic arches	17	
Figure (2):	Circulation of the Carotid system		
Figure (3):	Comparison between the Hemodynamic		
3	changes regarding to rick factors		
Figure (4):	Comparison between the Hemodyna		
3	changes regarding to degree of stend		
Figure (5):	Comparison between the Hemodyna		
3	events regarding to Calcification		
	Ulceration		
Figure (6):	Comparison between the Hemodyna	amic	
J	events regarding to Stent diameter.	70	
Figure (7):	Comparison between the Hemodyna	amic	
_	events regarding to HR		
Figure (8):	Comparison between the Hemodyna		
	events regarding to SBP	76	
Figure (9):	Comparison between the Hemodyna	amic	
	events regarding to DBP		
Figure (10):	Comparison between the Hemodyna		
3	events regarding to hemodyna	amic	
	treatment	81	
Figure (11):	Comparison between the percent	${f t}$ of	
	change of HR regarding to HTN		
Figure (12):	Comparison between the percent	${f t}$ of	
	change of SBP regarding to CAD	88	
Figure (13):	Comparison between the percen		
•	change of DBP regarding	to	
	Vasopressor	91	

Abstract

Background: Carotid artery stenting implies instrumentation of the carotid bulb where the baroreceptors are placed and therefore baroceptor's dysfunction may provoke hemodynamic instability, Hemodynamic depression has been reported after carotid artery stenting (CAS) and carotid endarterectomy (CEA).

Aim and objectives: This study aimed to assess the predictors of hemodynamic Changes peri carotid artery stenting.

Subjects and methods: This was Prospective observational study that was Conducted at Ain shams university hospitals –Railway hospital (ERMED) and Suez insurance hospital, the study was conducted on 20 patients that developed carotid artery stenosis.

Results: the results revealed that there was no statistically significant difference between presence and absence of hemodynamic changes as regard Lesion length, Dilatation %, and Lesion location. There was high statistically significant difference between Hemodynamic changes as regard Stent diameter, where p= 0.005.

Conclusion: Hemodynamic instability due to hypotension and bradycardia in response to carotid artery stenting occurs in a relatively high proportion of patients. This study reemphasizes the importance of close hemodynamic monitoring during and after CAS and is consistent with the previous studies witch showed that the instability didn't translate into major neurologic complications.

Keywords: Carotid, Stent, Instability, Hemodynamic, Baroreceptors, CAS.

Introduction

erebrovascular disease is a leading cause of death and a major cause of permanent neurological and physical impairment in adults. In the United States, cerebrovascular disease is the second most common cause of death, with approximately 795,000 strokes occurring each year (*Benjamin et al.*, 2017).

Carotid revascularization prevents recurrent ischemic stroke in patients with significant symptomatic carotid artery stenosis. Carotid endarterectomy has been the gold standard treatment for symptomatic significant carotid artery stenosis for more than 60 years (*Benjamin et al.*, 2017).

Carotid artery stenting (CAS) (or carotid artery stent implantation) has developed rapidly over the last 30 years, and its frequency is increasing because it is less invasive than carotid endarterectomy with a low risk of cardinal injury and fewer surgical complications (*De Rango et al.*, 2011).

The revascularization of the carotid artery stenosis by CEA rapidly resolves chronic pressure differences in patients, so that a large blood flow and high blood pressure are delivered to the brain parenchyma without adaptation. Most patients show cerebral vasoconstriction from autoregulation of the brain, and elevated perfusion pressure is restored to a normal level within a few minutes due to this mechanism in CAS. However, in

some patients, this auto-regulating ability is impaired due to long-term excessive lowering of cerebral blood flow, which can result in persistently elevated intracranial pressure (lasting from a few hours to days), thereby causing hyperperfusion syndrome (Kim et al., 2013).

Hemodynamic complications that occur after carotid artery stenting probably are mediated through dysfunction adventitial baroreceptors. During the percutaneous artery stenting of carotid artery stenosis, the interventionist places a small guide catheter through the stenosis to allow the placement of the stent. Then he inserts an autoexpandable stent which and reestablishes the the stenosis blood flow. Sometimes, the interventionist uses a balloon to expand the blood vessel. This extensive manipulation of the carotid sinus and carotid walls leads to activation of the baroreceptors and hypotension and/or bradycardia (*Popescu et al.*, 2011).

Prediction of hypotension after CAS is important for preventing periprocedural ischemic complications. Diabetes mellitus, severe calcified plaque, balloon dilatation pressure, octogenarians, contralateral occlusion, female sex, distance from carotid bifurcation to maximum stenotic lesion, eccentric plaque formation, open-cell stent, and asymptomatic lesion are the reported risk factors that are independently associated with hemodynamic depression after CAS (Csobay-Novák et al., 2015).

HYPOTHESIS

Hemodynamic instability following CAS has been associated by some with worse clinical outcomes. However, significant controversy still exists regarding the predictors of HI.associated by more or less hemodynamic changes. Thus, the purpose of this study will be to determine the predictors of hemodynamic instability following carotid artery stenting (CAS) from a single institutional series.

AIM OF THE WORK

This study aims to assess the predictors of hemodynamic changes after carotid artery stenting.