

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

THREE-DIMENSIONAL FLUID STRUCTURE INTERACTION ANALYSIS OF ATHEROSCLEROTIC CAROTID ARTERY MODELS OF DIFFERENT CALCIFICATION PATTERNS

By

Aya Hassan Faek Abdel Hamed Mahmoud

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Biomedical Engineering and Systems

THREE-DIMENSIONAL FLUID STRUCTURE INTERACTION ANALYSIS OF ATHEROSCLEROTIC CAROTID ARTERY MODELS OF DIFFERENT CALCIFICATION PATTERNS

By **Aya Hassan Faek Abdel Hamed Mahmoud**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

in **Biomedical Engineering and Systems**

Under the Supervision of

Associate Professor
Systems and Biomedical Engineering
Faculty of Engineering, Cairo University

Associate Professor
Systems and Biomedical Engineering
Faculty of Engineering, Cairo University

Associate Professor
Systems and Biomedical Engineering
Faculty of Engineering, Cairo University

Dr. Khaled Z. Abd-elmoniem

Assistant Professor Systems and Biomedical Engineering Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

THREE-DIMENSIONAL FLUID STRUCTURE INTERACTION ANALYSIS OF ATHEROSCLEROTIC CAROTID ARTERY MODELS OF DIFFERENT CALCIFICATION PATTERNS

By **Aya Hassan Faek Abdel Hamed Mahmoud**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Approved by the

Examining Committee	
Assoc.Prof.Dr. Ahmed M. Ehab Mahmoud,	Thesis Main Advisor
Assoc.Prof.Dr. Noha S. Hassan,	Advisor
Prof.Dr. Mohamed E. Rasmy,	Internal Examiner
Prof.Dr. Ayman M. Khalifa, - Helwan University	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 **Engineer's Name:** Aya Hassan Faek Mahmoud

Date of Birth: 11/5/1990 **Nationality:** Egyptian

E-mail: ayah.faek@gmail.com

Phone: 01285224841

Address: 17 El Salam Street, Haram, Giza.

Registration Date: 1/10/2012 **Awarding Date:**/2020 **Degree:** Master of Science

Department: Biomedical and Systems Engineering

Supervisors: Assoc.Prof. Dr. Ahmed M. Ehab Mahmoud

Assoc.Prof. Dr. Noha S. Hassan Dr. Khaled Z. Abd-elmoniem

Examiners: Assoc.Prof. Dr. Ahmed M. Ehab Mahmoud (Thesis Main advisor)

Assoc.Prof. Dr. Noha S. Hassan (Advisor)

Prof. Dr. Mohamed E. Rasmy (Internal examiner) Prof. Dr. Ayman M. Khalifa, (External examiner)

Helwan University

Title of Thesis:

Three-dimensional fluid structure interaction analysis of atherosclerotic carotid artery models with different calcification patterns.

Key Words:

Cardiovascular modelling; Fluid structure interaction; Carotid atherosclerosis; Calcified plaques.

Summary:

We presented an image-based computational modelling analysis for atherosclerotic carotid artery models with different calcification patterns. We built various carotid models based on patient specific magnetic resonance images of atherosclerotic carotid artery for a symptomatic patient. 3D Fluid structure interaction computations were performed to study the mechanical behaviour of the atherosclerotic carotid models. We investigated the stress/strain analysis of carotid plaque models that encompassed different calcification patterns. We also studied the impact of plaque morphology, stenosis degree level, material properties on the mechanical behaviour of the carotid models. Predicting the mechanical behaviour of carotid plaques leads to better patient diagnosis, and treatment as well as decreasing the high risk for endovascular procedures.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Aya Hassan Faek Mahmoud	Date://
a.	
Signature:	

Dedication

This work is dedicated to my lovely parents for their care, devotion and unconditional support, to my husband who encouraged me to pursue my research, to my sweet daughter who always inspires me and to my brother and sister for their active help.

Acknowledgments

I wish to thank my main advisor, Dr. Ahmed M. Ehab Mahmoud for his constant support, guidance and motivation. At all stages in the course of this research project I benefited from his advice and suggestions.

I would like to express my deepest gratitude to my supportive advisor, Dr. Noha S. Hassan, for her encouragement, patience, advice and valuable time. Her guidance helped me through each stage of the research process. Her careful editing contributed enormously to the production of this thesis.

I am grateful for the Biomedical Engineering department and the Rehabilitation and Bionics Lab at Cairo University for providing me a quality work environment and a complete access to the software programs used in this work.

I would like to thank Dr. Ahmed M. Gharib and Dr. Khaled Z. Abd-Elmoniem from the NIH, USA for their help.

Table of Contents

DISCLAIM	ER	I
DEDICATION	ON	II
ACKNOWL	LEDGMENTS	III
TABLE OF	CONTENTS	IV
LIST OF TA	ABLES	VII
LIST OF FI	GURES	VIII
NOMENCL	ATURE	XIV
ABSTRACT	T	XV
	1 BACKGROUND AND INTRODUCTION	
1.1.	CARDIOVASCULAR SYSTEM	1
1.2.	CARDIOVASCULAR DISEASE	
1.3.	CAROTID ATHEROSCLEROSIS DIAGNOSIS	7
1.4.	CAROTID ATHEROSCLEROSIS TREATMENT	
1.5.	THESIS OBJECTIVE	
1.6.	THESIS ORGANIZATION	
1.7.	THESIS PUBLICATION	
CHAPTER	2 LITERATURE REVIEW	12
2.1.	Introduction	12
2.2.	VULNERABLE PLAQUE	12
2.3.	IMAGING ACQUISITION MODALITY	14
2.4.	BIOMECHANICAL STUDIES FOR ATHEROSCLEROTIC PLAQUES	17
2.5.	BIOMECHANICAL STUDIES FOR CALCIFIED PLAQUES	20
CHAPTER	3 MATERIALS AND METHODS	21
3.1.	IMAGING SEGMENTATION	22
3.1.1.	Lumen segmentation steps in 3D Doctor software:	22
3.1.2.	Artery wall and plaque segmentation steps in 3D Doctor software	e: 25
3.1.3.	Building the 3D surface models in 3D Doctor Software	27
3.2.	CREATING 3D GEOMETRY BASE MODEL	29
3.3.	ONE WAY FSI FOR THE BASE MODEL	30
3.3.1.	Fluid domain (Computational fluid dynamics)	
3.3.2.	FSI system coupling	
3.3.3.	Structure domain (finite element analysis)	
3.3.4.	Comparing different material properties for artery wall	
3.4.	STUDY THE IMPACT OF CALCIFICATION PATTERNS IN THE BASE M	
3.4.1	Base model with speckled calcification pattern	

3.4.2.	Base model with diffused calcification in tissue pattern	44
3.4.3.	Base model with concentric calcification	
3.4.4.	Base model diffused calcification in lipid pattern	47
3.4.5.	Using stiffer elastic modulus for calcification	47
3.5.	STUDY IMPACT OF STENOSIS ON THE MECHANICAL BEHAVIOUR	48
3.6.	STUDY THE IMPACT OF CALCIFICATION PATTERNS IN THE STENG	OSED
MODEL		49
3.7.	SIMULATION CHALLENGES	51
CHAPTER	4 : RESULTS	53
4.1.	THE MECHANICAL BEHAVIOUR OF THE BASE MODEL	53
4.1.1.	Fluid domain results	53
4.1.2.	FSI results	55
4.1.3.	Effect of material properties for artery wall, FC and lipid on FP	S59
4.2.	EFFECT OF VARIABLE CALCIFICATION PATTERNS ON THE FPS O	F THE
BASE MOD	EL	61
4.2.1.	FPS for the base model with different calcification patterns	61
4.2.2.	Circumferential strain distribution for the base model with diffe	
calcifica	tion patterns	67
4.3.	EFFECT OF THE CALCIFICATION ELASTIC MODULUS FOR DIFFER	ENT
CALCIFICA	ATION PATTERNS ON THE FPS	70
4.4.	EFFECT OF STENOSIS ON THE MECHANICAL BEHAVIOUR OF THE	BASE
4.4.1.	Fluid domain results	
4.4.2.	FSI results.	
4.5.	EFFECT OF CALCIFICATION PATTERNS ON THE FPS IN THE STEN	
4.5.1.	Computed FPS in different calcification patterns	
4.5.2.	Circumferential strain in different patterns	
	EFFECT OF SPECIFIC CALCIFICATION MATERIAL PROPERTIES FOR DIFFE	
	ATION PATTERNS ON THE FPS	
4.7.	EFFECT OF CHANGING THE LIPID VOLUME IN THE CALCIFICATION	04
		90
DIFFUSED	WITH LIPID PATTERN	89
CHAPTER	5 DISCUSSION	90
5.1.	CFD ANALYSIS	90
5.1.1.	Base model and stenosed model CFD results	90
5.1.2.	CFD assumptions	91
5.2.	FSI ANALYSIS	91
5.2.1.	Base model and stenosed model stress analysis	91
5.2.2.	The impact of material properties for artery wall and FC	92
5.3.	BASE MODEL WITH DIFFERENT CALCIFICATION PATTERNS	92
5.3.1.	FPS	92
5.3.2.	Circumferential strain	93
5.4.	THE EFFECT OF THE CALCIFICATION ELASTIC MODULUS ON THE FP	S OF THE
BASE MOD	DEL WITH DIFFERENT CALCIFICATION PATTERNS	94

5.5.	STENOSED MODEL WITH DIFFERENT CALCIFICATION PATTERNS	94
5.5.1.	FPS	94
5.5.2.	Circumferential strain	94
5.6.	THE IMPACT OF THE CALCIFICATION PATTERN SPECIFIC MATERIAL	
PROPERTIES		95
5.7.	CHANGING LIPID VOLUME IN CALCIFICATION DIFFUSED WITH LIPID	
PATTERN		95
5.8.	LIMITATIONS	96
CHAPTER 6	CONCLUSIONS AND FUTURE WORK	97
6.1.	Conclusions	97
6.2.	FUTURE WORK	98
REFERENCE	S	99
APPENDIX A		.105
A.1 FLUID ST	RUCTURE INTERACTION	. 105
	simulation	
A.1.2 Struc	ture mechanics	.107
	Structure Interface	

List of Tables

Table 2.1: Morphological features and the corresponding AHA classification	13
Table 2. 2: Contrast of MRI plaque components [42]	
T. 1. 2.1. C	40
Table 3.1: Constants values of the 5 parameter Mooney Rivlin by Teng [74]	
Table 3.2: Material properties for lipid and calcification	43
Table 3.3: Measurements of the calcification patterns contents	50
Table 3.4: Elastic modulus for calcifications in the four patterns	51

List of Figures

Figure 1.1: Blood circulation in the human body [2]Figure 1.2: Test tube containing blood [7]	
Figure 1.3: Blood vessels [10]	
Figure 1.4: The carotid artery diagram [12].	
Figure 1.5: Stroke has ranked by WHO as the second cause of death in the past decade [13].	e
Figure 1.6: ischemic stroke that caused by a blood clot produced from narrowed caroticatery [16].	id
Figure 1.7: Normal (healthy) artery (left) and atherosclerotic plaque artery (right) [18] Figure 1.8: Atherosclerosis progression [23]	.5 6 7
Figure 1.10: Endartectomy procedure [28]	n
[30] Figure 1. 12: European society for vascular surgery guidelines for carotid atherosclerosis disease treatment plan [31]	
auteroscierosis disease treatment plan [51]	.9
Figure 2. 1: Vulnerable plaque versus stable plaque [33].	
Figure 2. 2: Atherosclerosis lesion types and their sequence [34]	14
[39]	15
Figure 2. 5: MRI images used to build 3D model; (a) cross sections for MRI images of a carotid artery, (b) the corresponded segmented contours and (c) the reconstructed 3D model [40])
model [40].	15
Figure 2. 6: Different contrast MRI cross section for carotid artery where short arrow indicates calcification and long arrows indicate lipid (blue: wall, red: lumen and yellow lipid) [41]	
Figure 2. 7: IVUS image for coronary artery at left and the corresponding segmented contour at right (yellow: lipid, blue: fibrous tissue and red: wall) [43].	
Figure 3. 1: Workflow chart describes steps of computational modelling	22
Figure 3. 4: A screenshot for the 3D Doctor Software showing the auto segmentation step.	
Figure 3. 5: A screenshot for the 3D Doctor Software showing the smoothing boundar step.	у
Figure 3. 6: The segmentation process steps of a 2D MRI slice of carotid artery at bifurcation. (a) Output of automatic segmentation, (b) Removing artefact pixels, (c) lumen boundary smoothing (Blue: polygon of region of interest area, red: lumen	
boundary)	23