

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

# بسم الله الرحمن الرحيم





MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



MONA MAGHRABY



شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

# جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار



MONA MAGHRABY





# Cairo University Faculty of Veterinary Medicine

### Prevalence and Transmissibility of Antimicrobial Resistance Genes in Heat Treated Milk

# Thesis submitted by Eman Mostafa Salah Mohamed Taher

(BVSc, Cairo University, 2011; MVSc, Cairo University, 2015)

For the degree of Ph.D.

(Hygiene and control of milk and its products)

**Under Supervision of** 

Prof. Dr. Hamdy A. Elesawy

Prof. Dr. Salwa A. Aly

Professor of Milk Hygiene and Control Faculty of Veterinary Medicine Cairo University, Egypt Professor of Milk Hygiene and Control Faculty of Veterinary Medicine Cairo University, Egypt

#### A. Prof. Kiro R. Petrovski

Associate professor School of Animal and Veterinary Science Adelaide University, Australia

(2020)





## Cairo University Faculty of Veterinary Medicine

## **Supervision sheet**

### Prof. Dr. Hamdy A. Elesawy

Professor of Milk Hygiene and Control Faculty of Veterinary Medicine Cairo University.

### Prof. Dr. Salwa A. Aly

Professor of Milk Hygiene and Control, Faculty of Veterinary Medicine, Cairo University.

#### A.Prof. Kiro R. Petrovski

Associate professor

School of Animal and Veterinary Science

Adelaide University, Australia.

(2020)





## Cairo University Faculty of Veterinary Medicine Food Hygiene and Control Department

Name: Eman Mostafa Salah Mohamed Taher

**Date of birth**: 1/7/1989 **Nationality**: Egyptian

Degree: PhD, Veterinary medical science

**Specialization**: Hygiene and control of milk and its products.

Title of the thesis: Prevalence and transmissibility of antimicrobial resistance genes in heat treated milk.

**Supervision:** 

Prof. Dr. Hamdy A. Elesawy Professor of Milk Hygiene and Control, Faculty of

Veterinary Medicine, Cairo University, Egypt

Prof. Dr. Salwa A. Aly Professor of Milk Hygiene and Control, Faculty of

Veterinary Medicine, Cairo University, Egypt

A. Prof. Kiro R. Petrovski Associate professor, School of Animal and

Veterinary Science, Adelaide University, Australia

#### **Abstract**

This study investigated the persistence and quantification of blaZ, mecC and tetK plasmid-mediated ARGs copy numbers of two staphylococcal strains in both milk and Tris - EDTA (TE) buffer over 3 weeks storage on refrigeration +4°C. During subsequent storage after pasteurization, all tested genes showed increased copy numbers. By electroporation of these genes to the Staphylococcus aureus RN42200 electro-competent strain, both mecC and tetK genes were still expressive and transferable. The formation of VBNC cells was estimated with viability staining and quantitative PCR of 16S rDNA copy numbers of both staphylococcal strains. On the other hand, surveying the prevalence of nine plasmid-mediated and one genomic AMR genes in 100 (50 bulk tank milk & 50 milk filters socks) samples at farm level and 152 (84 pasteurized and 68 ultra-heat-treated milk) commercial samples, results revealed that sul2 gene was the most prevalent plasmid-mediated gene in (96%) milk filters socks, (48%) bulk tank milk, (68%) pasteurized and (43%) UHT samples; on contrary the mecA gene could not be detected in any sample. Moreover, currently practiced commercial pasteurization not only failed to decrease the prevalence of the bla-TEM-B1 (43%), tetK (30%) and tetA (55%) plasmid-mediated AMR genes, but also potentially stimulates dairy microbiota to enter into a viable but non-culturable (VBNC) state. In contrast, after the sterilization treatment all the genes showed decreases in copy numbers, and viability assessment showed that UHT treatment is less to induce VBNC state. Continued research is necessary to identify bacterial species entering the VBNC state after pasteurization, assess their potential resuscitation hazard level, and shed more light on the expression and possibility of horizontal gene transfer of those plasmid-mediated AMR genes to gut microbiota.

#### Keywords

Milk pasteurization, Antimicrobial resistance genes (ARGs), Ultra High Temperature (UHT), VBNC, Scanning electron microscopy (SEM), horizontal gene transfer (HGT), Viability assay, staphylococci

### **DEDICATION**

To my loving parents who fostered my curiosity, my sister Ayah and my brother Mohamed who believed in me even when I didn't, for their unwavering support, encouragement and unconditional love.

To the fascinating little bugs, that I've been working on and those I haven't yet worked on, who never failed to amaze me and fire my curiosity, to those who have taught me my greatest lessons and keep showing me how big is the knowledge yet to be discovered. Our smartest competent on Earth! this is only one chapter of our friendship and there is more to come.

## ACKNOWLODGMENT

First and foremost, Praise to Allah the most gracious and the most merciful, for his countless graces, guidance and the opportunity given to study and complete this thesis.

My deepest thanks to my supervisor Prof. Dr. Hamdy A. Elesawy for his precious supervision, helpful suggestion, kind advices, and continuous encouragement.

My sincere thanks are offered to Prof. Dr. Salwa A. Aly for her careful supervision, true concern and the valuable assistance she devoted for this thesis.

No words can adequately express my sincere gratitude and great appreciation to my supervisor A. Prof. **Kiro R. Petrovski** for his patience, empathy, continued support and encouragement, which allowed my studies to go the extra mile. I would also like to thank all of the members of Kiro's lab at University of Adelaide, Australia past and present for their quidance, support, and friendship over the two years I spent there.

I would like to thank heartily the all members of Food Hygiene and control Dept.

Cairo University.

And lastly, I would like to thank my family and friends, too many to name, for their amazing, ever-present encouragement and support throughout this journey.

### **CONTENTS**

| Chapter (1)                                                                                                                                                  |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| INTRODUCTION                                                                                                                                                 | 1 |
| Chapter (2)                                                                                                                                                  |   |
| LITERATURE REVIEW                                                                                                                                            | 6 |
| Milk microbiota and Antimicrobial resistance (AMR) threat                                                                                                    | 6 |
| Antimicrobials use on dairy farms                                                                                                                            | 7 |
| Antimicrobial resistance genes (ARGs) and their horizontal gene transfer (HGT)                                                                               | 9 |
| Phenotypic and molecular characterization of AMR10                                                                                                           | 6 |
| Antimicrobial susceptibility testing1                                                                                                                        | 6 |
| Molecular and genotyping characterization of AMR1                                                                                                            | 7 |
| Influence of milk heat treatments on the AMR genes1                                                                                                          | 7 |
| VBNC formation as a stress response to pasteurization20                                                                                                      | 0 |
| Chapter (3)                                                                                                                                                  |   |
| PUBLISHED PAPERS                                                                                                                                             |   |
| Chapter (3.1)                                                                                                                                                | 8 |
| Survival of staphylococci and transmissibility of their antimicrobial resistance genes in milk after heat treatments28                                       |   |
| Abstract2                                                                                                                                                    | 7 |
| Introduction2                                                                                                                                                | 7 |
| Materials and methods29                                                                                                                                      | 9 |
| Results and discussion34                                                                                                                                     | 4 |
| Conclusion                                                                                                                                                   | 8 |
| References5                                                                                                                                                  | 1 |
| Chapter (3.2)                                                                                                                                                | 4 |
| Molecular characterization of AMR genes on farm and commercial milk with emphasis on the effect of currently practiced heat treatments on the VBNC formation | 7 |
| Abstract                                                                                                                                                     |   |
| Introduction                                                                                                                                                 |   |
| Materials and methods60                                                                                                                                      |   |
| Results and discussion                                                                                                                                       | 3 |
| References 7                                                                                                                                                 |   |

| Chapter (4)                  |    |
|------------------------------|----|
| DISCUSSION                   | 80 |
| Chapter (5)                  |    |
| CONCLUSION AND RECOMENDATION | 81 |
| Chapter (6)                  |    |
| SUMMARY                      | 90 |
| Chapter (7)                  |    |
| REFERENCES                   | 94 |

#### List of Abbreviations

**16S rDNA** = 16S ribosomal DNA

**AGRF** = Australian Genome Research Facility

**AMR** = Antimicrobial Resistance

**ARGs** = Antimicrobial Resistance Genes

**ATP** = Adenosine Triphosphate

**BTM** = Bulk Tank Milk

**CFU** = Colony Forming Unit

**DCT** = Dry Cow Treatment

**EMA** = Ethidium Monoazide

**FDA** = Food and Drug Administration

**GDP** = Gross Domestic Product

**HGT** = Horizontal Gene Transfer

**HTST** = High Temperature Short Time

**IDF** = International Dairy Federation

**IMC** = Isothermal Microcalorimetry

**IMM** = Intramammary Antimicrobials

**LAB** = Lactic Acid Bacteria

**LTLT** = Low Temperature Low Time

**MALDI-TOF** = Matrix-Assisted Laser Desorption Ionization-Time of Flight mass

spectrometry

**MFS** = Milk Filter Socks

**MIC** = Minimum Inhibitory Concentration

**MRSA** = Methicillin Resistance *Staphylococcus aureus* 

**MVT** = Molecular Viability Test

NAS = Non-aureus Staphylococci

**NASBA** = Nucleic Acid Sequence-Based Amplification

**ORF** = Open Reading Frame

**PCR** = Polymerase Chain Reaction

**PMA** = Propidium Monoazide

**qPCR** = Quantitative Polymerase Chain Reaction

**RICA** = Rabbit Ileal Loop Assay

**RPF** = Resuscitation Promoting Factors

**RT-PCR** = Real time - Polymerase chain reaction

**SEM** = Scanning electron microscopy

**SIP** = Stable isotope probing

**STEC** = Escherichia coli Shiga toxin-producing

**UHT** = Ultra-high temperature

**VBNC** = Viable but non culturable

**WGS** = Whole genome sequencing

**WHO** = World health organization

### List of tables

| No. of table | Table contents                                                                                                                                                                                                                                                                                                                                                                                                 | Page |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1            | Chapter 2.  Molecular identification of different ARGs in most prevalent pathogenic microorganisms in milk and dairy products.                                                                                                                                                                                                                                                                                 | 10   |
| 1            | Chapter 3.1.  Description of primers used in this study for conventional and quantitative PCR analysis                                                                                                                                                                                                                                                                                                         | 41   |
| 2            | Copy numbers of <i>tetK</i> antimicrobial resistance gene (and their 95% CI) in non-heat treated, pasteurized and sterilized milk and pasteurized elution buffer (TE; Qiagen, Germany) over 3 weeks storage at (domestic fridge, 40C) of the <i>Staphylococcus scuiri</i> , at two starting concentrations of colony forming units per millilitre-1 (CFU/mL), tested weekly.                                   | 42   |
| 3            | Copy numbers of <i>blaZ</i> antimicrobial resistance genes (and their 95% CI) in non-heat treated, pasteurized and sterilized milk and pasteurized elution buffer (TE; Qiagen, Germany)over 3 weeks storage at (domestic fridge, 40C)) of the <i>Staphylococcus scuiri</i> , at two starting concentrations of colony forming units per millilitre-1 (CFU/mL), tested weekly.                                  | 43   |
| 4            | Copy numbers of <i>mecC</i> antimicrobial resistance gene (and their 95% CI) in non-heat treated, pasteurized and sterilized milk and pasteurized elution buffer (TE; Qiagen, Germany) over 3 weeks storage at (domestic fridge, 40C)) of the <i>Staphylococus aureus</i> ATCC® BAA-2312 <sup>TM</sup> strain, at two starting concentrations of colony forming units per millilitre-1 (CFU/mL), tested weekly | 44   |
| 5            | Copy numbers of 16S rDNA (and their 95% CI) in non-heat treated, pasteurized and sterilized milk and pasteurized elution buffer (TE; Qiagen, Germany) over 3 weeks storage at (domestic fridge, 40C) of the <i>Staphylococcus scuiri</i> strain, inoculated at 106 colony forming units per millilitre-1 (CFU/mL), tested weekly.                                                                              | 45   |
| 6            | Copy numbers of 16SrDNA and their (95% CI) in non-heat treated, pasteurized and sterilized milk and pasteurized elution buffer (TE; Qiagen, Germany) over 3 weeks storage at                                                                                                                                                                                                                                   | 46   |

(domestic fridge, 40C) of *Staphylococus aureus* ATCC® BAA-2312<sup>TM</sup> strain, inoculated at 106 colony forming units per millilitre-1 (CFU/mL), tested weekly.

#### Chapter 3.2.

UHT milk samples.

Oligonucleotides primer for detection of target organisms and specific antimicrobial resistance (AMR) genes by conventional PCR.

Prevalence (percent and 95% Confidence intervals) of 16S of target organisms and ten different antimicrobial resistance

72

genes in filter socks, bulk tank milk, pasteurized milk and

## List of figures

| No. of figure | Figure contents                                                                                                                                                                                                                                                                                                                                                                              | Page |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1             | Chapter 2.  Mechanisms of antimicrobial resistance acquisition in bacteria.                                                                                                                                                                                                                                                                                                                  | 14   |
| 2             | Overview of Both culture-dependent and culture-independent techniques for identification of viable and VBNC states of bacteria                                                                                                                                                                                                                                                               | 22   |
| 1             | Chapter 3.1. Standard curves for absolute quantification of <i>blaZ</i> (A), <i>tetK</i> (B), and <i>mecC</i> (C) AMR genes                                                                                                                                                                                                                                                                  | 47   |
| 2             | Log of copy numbers/mL of <i>blaZ</i> antimicrobial resistance gene (and their 95% CI) in non-heat treated, pasteurized and sterilized milk (A) and TE buffer (B) over 3 weeks stored in domestic fridge (4°C) of <i>Staphylococcus scuiri</i> strain inoculated with 10 <sup>5</sup> (CFU/mL), tested weekly. ■ non-heat treated; ■ pasteurized; □ sterilized.                              | 48   |
| 3             | Log of copy numbers/mL of <i>tetK</i> antimicrobial resistance gene (and their 95% CI) in non-heat treated, pasteurized and sterilized milk (A) and TE buffer (B) over 3 weeks stored in domestic fridge (4°C) of <i>Staphylococcus scuiri</i> strain inoculated with 10 <sup>5</sup> (CFU/mL), tested weekly. ■ non-heat treated; ■ pasteurized; □ sterilized.                              | 48   |
| 4             | Log of copy numbers/mL of <i>mecC</i> antimicrobial resistance gene (and their 95% CI) in non-heat treated, pasteurized and sterilized milk (A) and TE buffer (B) over 3 weeks stored in domestic fridge (4°C) of <i>Staphylococcus aureus</i> ATCC® BAA-2312 <sup>TM</sup> strain inoculated with 10 <sup>5</sup> (CFU/mL), tested weekly. ■ non-heat treated; ■ pasteurized; □ sterilized. | 49   |
| 5             | Log of copy numbers/mL of 16S rDNA (and their 95% CI) in non-heat treated, pasteurized and sterilized milk (A) and TE buffer (B) over 3 weeks stored in domestic fridge (4°C) of <i>Staphylococcus scuiri</i> strain inoculated with 10 <sup>6</sup> CFU/mL, tested weekly. ■ non-heat treated; ■ pasteurized; □ sterilized.                                                                 | 49   |