

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Serum Leptin In Ischemic Heart Disease Patients with and without Significant Diastolic Dysfunction In Lean and Obese Patients; Cross Sectional Study

Thesis

Submitted for partial fulfillment of the Master Degree in Cardiology

By

Ola Mohamed Saad Hamed Mahmoud

M.B.B.Ch, 2015 – Misr University for Science and Technology Cardiology Resident Doctor - Misr University for Science and Technology

Under Supervision Of

Assistant Prof. Ahmed Tamara

Assistant Professor of Cardiology Faculty of Medicine-Ain Shams University

Assistant Prof. Tamer Abu Arab

Assistant Professor of Cardiology Faculty of Medicine-Ain Shams University

Assistant Prof. Mohammed Zahran

Assistant Professor of Cardiology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2020

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to Assistant Prof. Ahmed Tamara, Assistant Professor of Cardiology, Faculty of Medicine-Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Assistant Prof. Tamer Abu Arab, Assistant Professor of Cardiology, Faculty of Medicine-Ain Shams University, Ain Shams University, for his continuous directions and support throughout the whole work.

I cannot forget the great help of Assistant Prof. Mohammed Zahran, Assistant Professor of Cardiology, Faculty of Medicine-Ain Shams University, for his invaluable efforts, tireless guidance and for his patience and support to get this work into light.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Abstract

Background Cardiovascular diseases represent the leading cause of mortality worldwide. Ischemic heart disease is one of the main causes of diastolic heart failure and its presence predicts a poor prognosis in ischemic heart patients. Most cardiovascular diseases can be prevented by addressing behavioral risk factors such as overweight and obesity. Leptin –also known as satiety hormone- helps in inhibiting hunger and regulate energy balance

Objective to correlate leptin level with ischemic heart disease with or without diastolic dysfunction by comparing it in lean and obese patients.

Material and Methods from June 2019 to November 2019, 140 ischemic patients documented with CA, MSCT or history of PCI AND 35 Control subjects were enrolled from both Ain Shams University, Cardiology department wards and outpatient clinic and Misr University for science and technology, cardiology department wards and outpatient clinic. All participants subjected to history, clinical examination, Duke CAD index to estimate the severity of ischemia, calculation of their BMI, blood sampling for measuring their serum leptin level and echocardiography for detecting the diastolic function. Patients were divided into four groups according to their BMI and Diastolic function in addition to the control group. Groups were demonstrated as follow Group A lean ischemic patients without significant diastolic dysfunction, Group B lean ischemic patients with diastolic dysfunction (II-IV), Group C obese ischemic patients without significant diastolic dysfunction, Group D obese ischemic patients with diastolic dysfunction(II-IV), Group E is a control group lean non ischemic without diastolic dysfunction.

Results: There were significant positive correlations between serum leptin and Duke score in all ischemic groups (n=140) (p<0.001). Serum leptin abnormality was significantly more frequent in diastolic dysfunction groups (n=70) than in non-dysfunction groups (N=70) (Group B 25.7%, group D 28.6% vs group A 5.7% group C 8.6%, also was lowest in control group (n=35) 0.0%. serum leptin was significantly positive correlated with ischemia as in group A17.8±2.1ng/mL group B 23.4±11.1ng/mL group C 55.4±10.9 ng/mL group D 65.2±10.8 ng/mL vs control group E 13.1±2.7 ng/mL.

Conclusion: leptin is an independent risk factor for coronary heart disease. Also elevated plasma leptin levels are associated with impaired left ventricular diastolic function in patients with CAD independently of obesity and other confounding variables.

Key words: serum leptin, diastolic dysfunction, coronary heart disease.

Abbreviation list: CA coronary angiography, MSCT multi-slice computed tomography, PCI percutaneous cardiac intervention, BMI body mass index, CAD coronary artery disease.

List of Contents

J	Page
Acknowledgment List of Abbreviations List of Figures List of Tables	i iii
Introduction	1
Aim of The Work	3
Review of Literature	4
Chapter 1: Leptin in coronary heart disease	4
Chapter 2: Obesity	12
Chapter 3: Diastolic dysfunction	20
Patients and Methods	31
Results	41
Discussion	59
Summary	66
Conclusion and Recommendations	69
References	70
Arabic Summary	

List of Abbreviations

 α -MSH : α -melanocyte-stimulating hormone

apoEBBBBlood brain barrierBMIBody mass index

CA : Coronary angiography
CAD : Coronary artery disease
CBC : Complete blood count

CCK : Cholecystokinin

CHD : Coronary heart disease

cm : Centimeter

CSF : Cerebrospinal fluid

CT : Computed Tomography
CVD : Cardiovascular disease
DD : Diastolic dysfunction
DNA : Deoxyribonucleic acid

DT : Deceleration time
DXA : Dual-energy X-ray
ECG : Electrocardiography

EDPVR : End-diastolic pressure-volume relationship

GLP-1 : Glucagon-like peptide 1

HbA1c : Hemoglobin A1c

HDL : High density lipoprotein

HF : Heart failure

HFpEF : Heart failure with a preserved ejection fraction

HTN : Hypertension

ID : Ischemic with diastolic dysfunction

IHD : Ischemic heart disease

IND : Ischemic without diastolic dysfunction

IVRT : Isovolumic Relaxation Time

JAK-STAT3: Janus Kinase-Signal Transducer and

Activator of Transcription-3

JNK : Jun Nuclear Kinase

Kcal : Kilocalorie

KFT : Kidney function test

Kg : kilogram

Kg/m² : Kilogram/ meter squared

LAP : Left atrial pressure

LDL : Low density lipoprotein

LV : Left ventricle

LVDD : Left ventricular diastolic dysfunction

LVDD-PEF : Left ventricular diastolic dysfunction with

preserved ejection fraction

LVEDVI LV : Left ventricular end-diastolic volume index

LVEF : Left ventricular ejection fraction MAPK : Mitogen-activated protein kinase

MetS : Metabolic syndromeMI : Myocardial infarctionmmHg : Millimeters of Mercury

MSCT : Multislice computed tomography

ng / ML : Nanograms per milliliter

NIND : Non ischemic without diastolic dysfunction

PCI : Percutaneous coronary intervention

PW: Pulsed wave PYY: Peptide YY

SLR : Soluble leptin receptors

TD : Tissue Doppler

TDI : Tissue Doppler index

TNF-α : Tumor necrosis factor alphaVLDL : Very low density lipoproteinWHO : World health organization

WHR : Waist hip ratio

List of Figures

Fig.	Title	Page
1	Sex among the study groups	42
2	Age among the study groups	43
3	BMI (kg/m ²) among the study groups	44
4	Smoking among the study groups	45
5	HTN among the study groups	45
6	Hyperlipidemia among the study groups	46
7	Family history among the study groups	47
8	Serum leptin among the study groups	52
9	Serum leptin abnormality among the study	53
	groups	
10	Correlation between serum leptin and BMI in	54
	obese dysfunction group	
11	Correlation between serum leptin and Duke	55
	score in obese dysfunction group	
12	Correlation between serum leptin and DT in	57
	obese dysfunction group	
13	Correlation between serum leptin and E/e' in	58
	obese dysfunction group	
14	Correlation between serum leptin and E/A in	58
	obese dysfunction group	

List of Tables

Table	Title	Page
1	Age and sex among the study groups	43
2	BMI (kg/m ²) among the study groups	44
3	Risk factors among the study groups	46
4	Coronary arteries stenosis and PCI among	47
	the study groups	
5	Echocardiography findings among the study	49
	groups (1/2)	
6	Echocardiography findings among the study	50
	groups (2/2)	
7	Serum leptin (ng/mL) among the study	51
	groups	
8	Serum leptin grade among the study groups	53
9	Correlations of serum leptin among study	54
	group (1/4)	
10	Correlations of serum leptin among study	55
	group (2/4)	
11	Correlations of serum leptin among study	56
	group (3/4)	
12	Correlations of serum leptin among study	57
	group (4/4)	

Introduction

Leptin -also known as satiety hormone- helps in inhibiting hunger and regulate energy balance, that's why the body does not trigger hunger responses when it does not need energy (1). It is one of the most important adipocytokine modulating metabolism by regulating energy balance and appetite ⁽²⁾. Most authors proved that the Leptin is an important hormone against obesity. Suggesting that the use of leptin therapy may be possible to prevent obesity and diseases like hypertension and diabetes mellitus even before their occurrence (3). Apart from metabolism, leptin exhibits systemic effects that includes lipolysis, immune modulation, helps blood pressure regulation as well it helps in wound healing and angiogenesis ⁽⁴⁾. Leptin activates sympathetic nervous system, participates in thrombosis and platelets aggregation as well and that's how it was linked to ischemic heart disease (5).

Meta-analysis performed in 2014 showed that serum leptin level was more statistically different in males than females in Ischemic heart diseases ⁽⁶⁾. Yet, Puurunen concluded that hyperleptinemia is associated with left ventricular diastolic dysfunction in patients with ischemic heart disease and may be sole mechanistic link connecting

the development of congestive heart failure in obese subjects ⁽⁷⁾. The immune modulation of leptin stimulating inflammatory response by activating TNF-α via p38 and JNK MAPK pathway and these inflammatory markers may be associated with the risk of recurrent myocardial infarction and death ⁽⁷⁾.