

Ain Shams University
Faculty of Engineering
Computer and Systems Engineering Department

Performance Evaluation of Multi-Agent System

A Thesis submitted in partial fulfillment of the requirements of The Degree of Master of Science (M.Sc.) in Electrical Engineering (Computer and Systems Engineering)

by Sabah Aly Darweesh Aly

Postgraduate Diploma in Electrical Engineering (Computer and Systems Engineering Department) Faculty of Engineering, Ain Shams University, 2016

Supervised by

Dr. Hassan Mohamed Shehata Bedour

Associate Professor Emeritus at Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Dr. Gamal Abdel Shafy Ebrahim

Associate Professor at Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University

Replaced

Ain Shams University Faculty of Engineering Computer and Systems EngineeringDepartment

Name: Sabah Aly Darweesh Aly

Thesis Title: Performance Evaluation of Multi-Agent System

Degree: Master of Science (M.Sc.) in Electrical Engineering

 $(Computer\ and\ Systems\ Engineering\)$

EXAMINERS' COMMITTEE

Name and Affiliation	Signature
Prof. Hany Mohamed Mohy El Deen Harb Dean of College of Information Technology, Misr University for Science & Technology	
Prof. Hoda Korashy Mohamed Professor Emeritus at Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University	
Dr. Hagger Makemad Chahata Dadann	•••••
Dr. Hassan Mohamed Shehata Bedour Associate Professor Emeritus Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University	
Dr. Gamal Abdel Shafy Ebrahim Associate Professor at Computer and Systems Engineering Department Faculty of Engineering, Ain Shams University	

Date: May 4, 2019

Statement

This thesis is submitted as a partial fulfilment of Master of Science in Electrical Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Sabah Aly Darweesh Aly

Signature

Date: May 4, 2019

Researcher's Data

Name Sabah Aly Darweesh Aly

Place of Birth Cairo, Egypt

First academic degree Bachelor of Science in Electrical Engineering

(Computer and Systems Engineering Department)

Field of specialization Computer and Systems Engineering

University issued the degree Ain Shams University

Date of issued degree 2001 (Cumulative Grade Good)

Last academic degree Postgraduate Diploma in Electrical Engineering

(Computer and Systems Engineering Department)

Field of specialization Engineering Programming

University issued the degree Ain Shams University

Date of issued degree 2016 (GPA 3.7, Grade A-)

Current job IT Manager at NCPSLU of Ministers Council

Thesis Summary

Name: Sabah Aly Darweesh Aly

Thesis: Performance Evaluation of Multi-Agent System

Degree: Master of Science (M.Sc.) in Electrical Engineering

(Computer and Systems Engineering)

Multi-Agent Systems (MASes) are commonly used in the emergence of computing from human behavior. This emergence appears in the autonomy, sociability, rationality, reactivity, adapting and learning characteristics of MAS. Therefore, MASes exist in a wide field in our lives and introduce the proper services. These services may be the non-mind machine, unmanned plane, banking transporting, smart device services and self-driving car.

Nevertheless, the standardization of performance evaluation methodologies of MASes is still very lack because of the variety of MASes, their agents and their functionalities. This research introduces a general approach to evaluate MAS performance. Especially, in this thesis, MAS performance means that how the agents perform in their MAS environment. Consequently, the evaluation process is based on some criteria of MAS. Meanwhile, these criteria are intelligence, security and criterion. suggested scalability Mainly, the approach depends the Goal/Question/Metric (GQM) model and Fuzzy Logic. Firstly, the criteria are typically exemplified using the GQM model. Secondly, the criteria are computed using mean functions and FISs. Finally, the agent performance is the output of FIS, which its inputs are the intelligence, security and scalability criteria. Practically, the agent performance is measured then MAS performance value is the mean of its agents. The evaluation process results are percentages of MAS criteria and its performance. In addition, a case study is evaluated using the suggested approach and its results are discussed. Finally, the sensitivity of the suggested approach is tested. Specifically, the approach sensitivity inducts the impact of user behavior change. Deductively, this thesis is going to measure MAS performance and the results enhance the explication of MAS advantages and disadvantages.

The contribution of this work is that it is the first time to introduce a general model to evaluate MAS performance and test the model sensitivity. Accordingly, the MAS developer can clearly use this evaluation to define the system. In addition, the MAS owner can identify MAS cost-effective. Moreover, the MAS manager simplifies and time-effectively uses this work to manage the system. Furthermore, the suggested model is a dynamic evaluation model. New criteria can be added to enhance the evaluation process.

Keywords: Fuzzy Logic, Goal/Question/Metric (GQM), Multi-Agent System (MAS), Performance Evaluation.

Acknowledgment

Much thanks to Allah for His Grace and Blessings to finish this master's thesis.

Very much thanks for my supervisor, Dr. Hassan M. Shehata Bedour, for offering me a great environment, plenty of opportunities, and freedom to be creative. Great thanks for my supervisor, Dr. Gamal A. Ebrahim, for giving me many detailed instructions on the ideas presented in this thesis and for his efforts.

Deeply thanks for Prof. Emad Hijazy; the past Vice Dean for Graduate Studies and Research of Faculty of Engineering Ain Shams University for encouraging scientific research. In addition, thanks a lot for the members of the Computer and Systems Engineering Department, especially, Dr. Manal Mourad.

Kind thanks to my brothers and sisters, without their efforts; I would not be able to get the opportunity to study. Lovely thanks for my husband, Mr. Waheed Lotfy. His love can always give me the inspirations to make progress on my research. Finally, I dedicate this thesis to my parents, may God have mercy on them.

Sabah Aly Darweesh Aly

Table of Contents

LIST O	F FIGURES	XV
LIST OI	F TABLESXV	'III
LIST OI	F ABBREVIATIONSX	XIX
СНАРТ	ER 1	1
INTROI	DUCTION	1
1.1	MOTIVATION AND OBJECTIVES	1
1.2	PROBLEM STATEMENT	3
1.3	THESIS FOCUS AND KEY CONTRIBUTIONS	4
1.4	THESIS OUTLINE	
СНАРТ	ER 2	7
LITERA	ATURE REVIEW	7
2.1	MULTI-AGENT SYSTEM IN THE LITERATURE	7
2.1.1	1. Agent Definition	8
2.1.2	2. Multi-Agent System Definition	10
2.1.3	3. Multi-Agent System Simulation	12
2.1.4	4. Multi-Agent Platform	14
2.1.5	5. Multi-Agent System Security and Scalability	17
2.2	MULTI-AGENT SYSTEM EVALUATION HISTORY	18
2.3	SOFTWARE PRODUCT MEASUREMENT	20
2.4	BUSINESS RULES	21
СНАРТ	ER 3	. 22
MULTI-	-AGENT SYSTEM PERFORMANCE MEASUREMENT	
METHO	DDOLOGY	. 22
3.1	BENEFITS AND ISSUES OF MAS PERFORMANCE MEASUREMENT	22
3.2	MULTI-AGENT SYSTEM PERFORMANCE CRITERIA MEASUREMEN	т23
3.3.1	I Intelligent Criterion	24
3.	.3.1.1 The Intelligence First Goal: Adapting	25
3.	.3.1.2 The Intelligence Second Goal: Rationality	26
3.	.3.1.3 The Intelligence Third Goal: Autonomy	27

;	3.3.1.4	The Intelligence Fourth Goal: Reactivity	28
3.3	.2 S	ecurity Criterion	30
;	3.3.2.1	Security First Goal: Security Requirements	30
:	3.3.2.2	Security Second Goal: Avoiding threats	35
3.3	.3 S	calability Criterion	36
CHAP	TER 4	ļ	39
PERFO)RMA	ANCE EVALUATION MODEL (PEMASFM)	39
4.1	PE	MASFM ARCHITECTURE	40
4.1	PE	MASFM CONTROLLERS	42
4.2	.1 F	uzzy Logic Controllers	43
4.2	.1.1	Performance Evaluation FLC	43
4.2	.1.2	Intelligence Criterion Fuzzy Logic Controller	46
4.2	.1.3	Adapting Goal Fuzzy Logic Controller	51
4.2	.1.4	Rationality Goal Fuzzy Logic Controller	53
4.2	.1.5	Autonomy Goal Fuzzy Logic Controller	54
4.2	.1.6	Reactivity Goal Fuzzy Logic Controller	55
4.2	.1.7	Security criterion Fuzzy Logic Controller	55
4.2	.2 Т	The Fuzzy Controllers Functions	57
4.2	AG	ENT SECURITY ALGORITHM	58
4.3	PE	MASFM PROTOTYPE	59
		5	60
CHAP	TER 5	,	00
		Y	
	STUD		60
CASE	STUD Thi	Y	60 61
CASE S	STUD THI .1 T	E CODE ADVISORY SYSTEM WORKING	6061
5.1 5.1	STUD THI .1 T .2 T	E CODE ADVISORY SYSTEM WORKING	606161
5.1 5.1 5.1	THI .1 T .2 T .3 T	E CODE ADVISORY SYSTEM WORKING The Architecture of the Code Advisory System The Code Advisory Database	6061616464
5.1 5.1 5.1 5.1	THI .1 T .2 T .3 T .4 T	E CODE ADVISORY SYSTEM WORKING	60616466
5.1 5.1 5.1 5.1 5.1	THI .1 T .2 T .3 T .4 T .5 H	E CODE ADVISORY SYSTEM WORKING The Architecture of the Code Advisory System The Code Advisory Database The Code Advisory Agents The Fuzzy Logic Part	6061646666
5.1 5.1 5.1 5.1 5.1 5.1	THI .1 T .2 T .3 T .4 T .5 H	E CODE ADVISORY SYSTEM WORKING The Architecture of the Code Advisory System The Code Advisory Database The Code Advisory Agents The Fuzzy Logic Part Tow-To-Do Screens	606164666769
5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.3	STUD THI .1 T .2 T .3 T .4 T .5 H RUIT	E CODE ADVISORY SYSTEM WORKING	60616466676971
5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.3 CHAP	THI .1 T .2 T .3 T .4 T .5 H RUIT	E CODE ADVISORY SYSTEM WORKING	60616466677174
5.1 5.1 5.1 5.1 5.1 5.1 5.2 5.3 CHAP	THI .1 T .2 T .3 T .4 T .5 H RUI PER	E CODE ADVISORY SYSTEM WORKING	60616466697174
5.1 5.1 5.1 5.1 5.1 5.2 5.3 CHAP	STUD THI .1 T .2 T .3 T .4 T .5 H RUI PER TER (SEN	E CODE ADVISORY SYSTEM WORKING	6061646667717477

6.1	.3 Question Sensitivity	79
6.1	.4 Model Sensitivity Conduction	81
6.2	MODEL DYNAMICS	82
CHAP'	ΓER 7	88
CONC	LUSION, CONTRIBUTION, AND FUTURE WORK	88
7.1	CONCLUSION	88
7.2	CONTRIBUTION	89
7.3	FUTURE WORK	89
APPEN	NDIX A	91
PEMA	SFM CRITERIA, GOALS, QUESTIONS AND METRICS	5 91
REFEI	RENCES	96

List of Figures

FIGURE 1.1. THESIS WORK	4
Figure 2.1. The definition of agents	8
FIGURE 2.2. THE AGENT IN ITS ENVIRONMENT	8
FIGURE 2.3. THE MOBILE AGENT MODEL	10
FIGURE 2.4. DEFINITION OF A MULTI-AGENT SYSTEM	10
FIGURE 2.5. A BASIC MODEL OF AN AGENT USED IN MAS	11
FIGURE 2.6. AGENT-BASED MODEL STRUCTURE	12
FIGURE 2.7. ODD PROTOCOL TO DESCRIBE THE ABM STRUCTURE	13
FIGURE 2.8. THE ABM MVC INSPIRED APPROACH	13
FIGURE 2.9. JADE BASED ON FIPA REFERENCE MODEL	15
FIGURE 2.10. GQM HIERARCHICAL MODEL	21
FIGURE 3.1. MAS PERFORMANCE CRITERIA	24
FIGURE 3.2. THE GQM STRUCTURE FOR INTELLIGENCE CRITERION	25
FIGURE 3.3. THE GQM STRUCTURE FOR THE ADAPTING GOAL	26
FIGURE 3.4. THE GQM STRUCTURE FOR THE RATIONALITY GOAL	27
FIGURE 3.5. THE GQM STRUCTURE FOR THE AUTONOMY GOAL	28
FIGURE 3.6. THE GQM STRUCTURE FOR THE REACTIVITY GOAL	29
Figure 3.7. The goals and questions for the security criterion $GQM\$	30
FIGURE 3.8. THE MAS CONFIDENTIALITY GQM	31
FIGURE 3.9. THE MAS AUTHENTICATION GQM	32
FIGURE 3.10. THE MAS INTEGRITY GQM	33
FIGURE 3.11. THE MAS ACCESS CONTROL GQM	33
FIGURE 3.12. THE MAS NON-REPUDIATION GQM	34
FIGURE 3.13. THE MAS AVAILABILITY GQM	35
FIGURE 3.14. SECURITY AVOIDING THREATS GQM STRUCTURE	36
FIGURE 3.15. THE MAS SCALABILITY GQM	37