

A Comparison of Intranasal Dexmeditomidine versus Intranasal Midazolam as a pre Anesthetic Medication in Children Undergoing Adenotonsillectomy

Thesis
Submitted for Partial Fulfillment of
Master Degree in Anesthesiology

Βγ
Nourhan Mohammed Abd Allah El Zoghby

M.B.B.CH., Ain Shams University.

Under Supervision of

Prof. Dr. Ahmed Saeed Mohammed

Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Ahmed Mohammed El Hennawy

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Ramy Mounir Wahba

Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my sincere gratitude to Prof.

Dr. Ahmed Saced Mohammed, Professor of Anesthesiology,
Intensive Care and Pain Management, Faculty of
Medicine, Ain Shams University, under his supervision, I
had the honor to complete this work, I am deeply grateful
to him for his professional advice, guidance and support.

My deep gratitude goes to Assist. Prof. Dr. Ahmed Mohammed El Hennawy, Assistant Professor of Anesthesiology, Intensive Care and Pain Management,, Faculty of Medicine, Ain Shams University, for his invaluable efforts, tireless guidance and meticulous supervision throughout this work.

I would like also to thank \mathfrak{Dr} . Ramy Mounir Wahba, Lecturer of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for the efforts and time he has devoted to accomplish this work.

Last but not least, I would like to thank all my Family, especially my Parents, for their kind care, help and encouragement.

Nourhan Mohammed Abd Allah El Zoghby

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	9
Introduction	
Aim of the Work	12
Review of Literature	
Pediatric Sedation	13
■ Intranasal Route	30
Midazolam	
Dexemeditomidine	
Patients and Methods	
Results	
Discussion	
Summary	
Conclusion	
References	
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
ACTH	.Adrenocorticotropic hormone
	.Antiduretic hormone
ASA	.American Society of Anesthiologists
AVPU scale	.Alert, verbal, pain, unresponsive
BBB	.Blood brain barrier
<i>BP</i>	.Blood pressure
<i>CBC</i>	.Complete blood count
CNS	.Central nervous system
COPD	$. Chronic\ obstructive\ pulmonary\ disease$
CSF	.Cerebrospinal fluid
CT	$. Computerized\ tomography$
CVS	.Cardiovascular system
DBP	.Diastolic blood pressure
FDA	$. Food\ and\ Drug\ Administration$
<i>GABA</i>	.Gamma aminobutyric acid
<i>GIT</i>	$. Gastroint estinal\ tract$
HCl	.Hydrogen chloride
HR	.Heart rate
<i>ICP</i>	.Intracranial pressure
<i>IM</i>	. In tramascular
<i>IV</i>	. In travenous
JCAHO	Joint Commission on Accreditation of Health Care Organization
<i>KFT</i>	.Kidney function test

Tist of Abbreviations cont...

Abb.	Full term
<i>LFT</i>	Liver function test
<i>MAP</i>	Mean arterial blood pressure
MRI	Magnetic Resonance Imaging
NMDA	N- $methyl$ - D - $aspartate$
OTFC	Oral transmucosal fentanyl citrate
<i>PACU</i>	Post anasthetic care unit
POSS	Pasero Opioid-Induced Sedation Scale
PRN	Pro Re Nata
PT	Pothrombin time
PTT	Partial thromboplastin
RASS	Richmond Agitation -Sedation Scale
<i>SBP</i>	Systolic blood pressure
SD	Standard deviation
Spo2	Oxygen saturation

Tist of Tables

Table No.	Title	Page No.	
Table (1):	Classification of sedation according to ASA and JCAHO		
Table (2):	Pasero Opioid-Induced Sedation (POSS)		
Table (3):	Ramsay score	27	
Table (4):	Richmond Agitation-Sedation (RASS)		
Table (5):	Aldrete score	29	
Table (6):	Dexmedetomidine: Basic Pharmacok Profile		
Table (7):	Comparison between Group Dexmedetomidine and Group B: Mida according to demographic data	ızolam	
Table (8):	Comparison between Group Dexmedetomidine and Group Midazolam according to mean as blood pressure (mmHg)	B: rterial	
Table (9):	Comparison between Group Dexmedetomidine and Group Midazolam according to heart (beat/min).	B: rate	
Table (10):	Comparison between Group Dexmedetomidine and Group B: Mida according to SpO2 (%)	ızolam	
Table (11):	Comparison between Group Dexmedetomidine and Group B: Mida according to sedation score	ızolam	

Tist of Tables cont...

Table No.	Title	Page No.
Table (12):	Comparison between Group Dexmedetomidine and Group B: Mid according to anxiety score	dazolam
Table (13):	Comparison between Group Dexmedetomidine and Group Midazolam according to separation and agitation score	p B: n score

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Mechanism of drug absorption from n	ose33
Figure (2):	Chemical structure of midazolam	40
Figure (3):	The structure of dexmedetomidine	51
Figure (4):	Receptor signaling	54
Figure (5):	Bar chart between groups according (years).	
Figure (6):	Bar chart between groups according	to sex 67
Figure (7):	Bar chart between groups according	to BMI 68
Figure (8):	Comparison between groups accomean arterial blood pressure (mmHg	_
Figure (9):	Comparison between groups according heart rate (beat/min)	
Figure (10):	Comparison between groups according SpO2(%).	
Figure (11):	Comparison between groups accorded sedation score.	
Figure (12):	Comparison between groups accordanced anxiety score	_
Figure (13):	Bar chart between groups according separation score and agitation score	-

Introduction

denotonsillectomy is one of the most common surgical procedures performed on pediatric patients. Relieving preand post-operative anxiety is an important concern for the pediatric anesthesiologist. Anxiety can produce aggressive reactions, increase distress, and may make the control of postoperative pain difficult. Pre-anesthetic medication in children should aim at relieving this anxiety and psychological trauma and also to facilitate the induction of anesthesia without prolonging the recovery (Ghali et al., 2011).

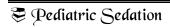
A pre-medicate drug must have an acceptable, nontraumatic route of administration in order not to add extra stress to the child. Many studies have shown that intranasal route is an effective way to administer premedication and sedation to children. It is a relatively easy non-invasive route with high bioavailability and rapid onset of action comparable to that of IV administration because of the rich blood supply of the airway mucosa and bypassing the first pass hepatic metabolism. Also, this route is not painful and does not require trained personnel (Wang and Bu, 2002).

The benzodiazepine (midazolam) a GABA receptor stimulator is the most commonly used sedative drug for premedication in children. Administered intranasal, midazolam is an effective option for conscious sedation (Mostafa and Morsy, 2013).

Midazolam has a number of beneficial effects when used as premedication in children: sedation, fast onset, and limited duration of action. Despite having a number of beneficial effects, it is far from an ideal pre-medicate having side effects such as restlessness, paradoxical hyperactive reaction, cognitive impairment, amnesia, and respiratory depression (Bergendahl et al., 2006).

Dexmedetomidine is a newer alpha 2-agonist with a more selective action on the alpha adrenoceptor with both sedative and analgesic properties and is devoid of respiratory depressant effect. Its bioavailability is (72.6–92.1%) when administered via the nasal mucosa. These properties render it potentially useful for anesthesia premedication (Darshna et al., 2015).

So considering all these aspects, the present study was planned to evaluate sedation level and ease of child parent separation, the mask tolerance, and postoperative analgesia by comparing dexmedetomidine intranasal with intranasal midazolam as premedication in pediatric patients posted for adenotonsillectomy.


AIM OF THE WORK

The purpose is to compare intranasal dexmedetomidine with midazolam effect on preoperative sedation, the ease of children parent separation, the mask tolerance, intraoperative hemodynamics stability, emergence of anesthesia and postoperative analgesia in pediatric patients posted for adenotonsillectomy.

Chapter 1 PEDIATRIC SEDATION

premedication: is drug treatment given to a patient usually before medical or surgical procedures. The aim of premedication in children and young people is to produce a relaxed state with reduced anxiety and increased compliance, allowing the patient to tolerate and co-operate with the necessary procedure. This is commonly achieved by appropriate administration of pharmacological agents, typically sedative or analgesic. After effective premedication, patients may exhibit an altered level of consciousness but should retain the ability to independently and continuously maintain a patent airway, follow verbal commands, and respond appropriately to tactile stimulation (Fortier et al.,2010).

American society of anesthiologists (ASA) and Joint Commission on Accreditation of Health Care Organization (JCAHO) divided sedation into 4 levels:

Review of Literature _

Table (1): Classification of sedation according to ASA and JCAHO

Level	Minimal sedation (Anxiolysis)	Moderate sedation (conscious sedation)	Deep sedation	General sedation
Response	- Responds normally to verbal commands	- Responds Purposefully to verbal commands alone or with light touch	- Responds Purposefully to repeated or painfull stimuli i.e cannot easily be aroused (reflex withdrawal is not considered a purposeful response)	- No response by reflex withdrawal
Airway	- Airway and ventilation are maintained.	- Airway and ventilatory pattern are maintained.	- Airway may be or may not be maintained.	- Airway is lost
CVS	-CVS function is maintained.	- CVS function is maintained.		- CVS function may be impaired.

Indications:

- 1- In the emergency departments e.g fractures and lacerations.
- 2- Diagnostic imaging areas e.g CT scan, MRI, and barium studies.

- 3- GIT: Endoscopy.
- 4- Pulmonary: Broncoscopy.
- 5- CVS: Echocardiography and catheterization.
- 6- Burn unit: Dressings.
- 7- In other areas: e.g chest tube removal, bone marrow aspirations..etc.
- 8- Elective operations

Medications used as premedication:

Benzodiazepines:

The most commonly used sedative premedicant in the preoperative holding area is midazolam.

Lorazepam:

May be administered orally, intravenously, or intramuscularly and is metabolized by the liver to inactive metabolites. The intravenous formulation has been reported to be neurotoxic in neonates (*Relling et al.*, 1989).

Lorazepam has a slow onset and offset of action, and therefore is better used for inpatients. It has good amnestic properties and less tissue irritation than diazepam. The usual dose is 0.05 mg/kg administered orally or intravenously to older children; however a dose of 0.025 mg/kg has been adequate to decrease preoperative anxiety (*McCall et al.*, 1999).