

## بسم الله الرحمن الرحيم



-Call 4000





شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار













بالرسالة صفحات لم ترد بالأصل





# Critical illness myopathy in intensive care setting

### A systematic review and meta analysis

For Partial Fulfilment of Master Degree in General Intensive Care

# Presented by Kareem Mohamed Esmail Elnaghy M.B.B.CH

Under supervision of

#### Prof. Dr. Mostafa Kamel Fouad

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

### **Dr. Ashraf Mahmoud Hazem**

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

#### **Abstract**

Aim of the work: to provide cumulative data about the efficacy and safety of neuro-muscular electrical stimulation (NMES) combined with usual care (UC) versus usual care alone in ICU patients with Critical Illness Myopathy (CIM). Methodology: The current systematic review was done on studies published between 2009 and 2019. The total number of patients in all the included studies was 1259 patients; 652 in NMES group, and 607 in UC group. Our data were divided into two groups: NMES (652 patients), and UC (607 patients). Meta-analysis study was done on 11 studies which described and compared the 2 different techniques for treatment of CIM; with overall number of patients (N= 1259). Results: Regarding 1ry outcome measures, we found 8 studies reported MRC scale for muscle strength, with total number of patients (N=968). The random-effects model of the meta-analysis study showed non-significant difference in mean MRC scale in NMES group compared to usual care group (p > 0.05). We also found 11 studies reported ICU stay with total number of patients (N=1259). The random-effects model of the meta-analysis study showed non-significant difference in mean ICU stay in NMES group compared to usual care group (p > 0.05). We also found only 2 studies reported SF-36 scale for quality of life, with total number of patients (N=270). The fixed-effects model of the meta-analysis study showed highly significant decrease in mean SF-36 scale in NMES group compared to usual care group (p = 0.003). Regarding 2ry outcome measure, we found 3 studies reported CIM incidence with total number of patients (N=394). The fixed-effects model of the meta-analysis study showed marked decrease in CIM incidence in NMES group compared to usual care group, but not reaching statistical significance (p > 0.05). We also found 9 studies reported mortality rate with total number of patients (N=1044). The fixed-effects model of the meta-analysis study showed non-significant difference in mortality rate in NMES group compared to usual care. Our systematic review and meta-analysis showed that NMES combined with usual care was not associated with significant differences in global muscle strength, ICU stay, quality of life score, CIM incidence and mortality rate in comparison with usual care alone in critically ill patients. Conclusion: NMES is not superior to usual care in management of CIM. Usual care remains the mainstay of management of CIM with significant better outcomes, in addition to preventive measures as early aggressive treatment of sepsis and MOF, blood glucose control, optimizing certain drugs use, early enteral nutrition, maintaining water, electrolyte and acidbase balance.

**Key words:** Critical illness myopathy, intensive care setting

## List of Contents

| Title                       | Page No. |
|-----------------------------|----------|
| List of abbreviations       | i        |
| List of Tables              | ii       |
| List of Figures             | iii      |
| Introduction                |          |
| Aim of the Work             | 3        |
| <b>Review of Litrature</b>  |          |
| A- Incidence                | 4        |
| B- Pathophysiology          | 5        |
| C- Risk Factors             | 9        |
| D-Clinical presentation     | 12       |
| E-Investigations            | 14       |
| F- Diagnosis                | 20       |
| G- Differential diagnosis   | 22       |
| H- Prevention and treatment | 24       |
| I-Outcomes                  | 29       |
| Methodology                 | 31       |
| Results                     | 37       |
| Discussion                  | 55       |
| Summary                     | 63       |
| Conclusion                  | 66       |
| Recommendations             | 67       |
| References                  | 68       |
| Arabic Summary              |          |

## Tist of abbreviations

| Abb.    | Full term                                                          |
|---------|--------------------------------------------------------------------|
| AIDS    | Acquired immune deficiency syndrome                                |
| ALI     | Acute lung injury                                                  |
| APACHE  | Acute physiology, age, Chronic health evaluation                   |
| ARDS    | Acute respiratory distress syndrome                                |
| ATP     | Adenosine tri- phosphate                                           |
| CIT     | Conventional insulin therapy                                       |
| ICUAW   | Intensive care unit acquired weakness                              |
| IFN-γ   | Interferon gamma                                                   |
| IIT     | Intensive insulin therapy                                          |
| IL-1    | Interlukin – 1                                                     |
| CI      | Confidence interval                                                |
| CIM     | Critical illness myopathy                                          |
| CIP     | Critical illness polyneuropathy                                    |
| CIPNM   | Critical illness polyneuromyopathy                                 |
| CMAPs   | compound muscle action potentials                                  |
| CK      | Creatine kinase                                                    |
| dmCMAPS | Direct muscle compound muscle action potentials                    |
| DMS     | Direct muscle stimulation                                          |
| EMG     | Growth differentiation factor-15                                   |
| GDF-15  | Electromyography                                                   |
| HRQOL   | Health- related quality of life                                    |
| ICU     | Intensive care unit                                                |
| IQR     | Inter-quartile range                                               |
| MD      | Mean difference                                                    |
| MIP     | Maximal inspiratory pressure                                       |
| MOF     | Multi- organ failure                                               |
| MRC     | Medical Research Council                                           |
| MV      | Mechanical ventilation                                             |
| MUPs    | Motor unit potentials                                              |
| NCS     | Nerve conduction studies                                           |
| NMBAs   | Neuromuscular blocking agents                                      |
| NMES    | Neuro - muscular electrical stimulation                            |
| OR      | Odds ratio                                                         |
| PRISMA  | Preferred Reporting Items for Systematic Reviews and Meta-analyses |
| P value | Probability value                                                  |
| RCT     | Randomized clinical trial                                          |
| ROS     | Reactive oxygen species                                            |
| RR      | Risk ratio                                                         |
| SD      | Standard deviation                                                 |
| SF-36   | Short form -36                                                     |
| SIRS    | Systemic inflammatory response syndrome                            |
| SMD     | Standard Mean Difference                                           |
| SNAPs   | Sensory nerve action potentials                                    |
| TNF     | Tumor necrosis factor                                              |
| UC      | Usual care                                                         |

## List of Tables

| Table. No.                          | <del>Title</del>        | Page No.     |
|-------------------------------------|-------------------------|--------------|
| Table (1): Medical Research Coun    | cil sum score           | 15           |
| Table (2): Differential Diagnos     | is of "Failure to       | Wean From    |
| Ventilator"                         |                         | 22           |
| Table (3): Summary of patients an   | d study characteristics | :38          |
| Table (4): Meta-analysis of avera   | age MRC scale on N      | MES vs UC –  |
| Mean difference:                    |                         | 40           |
| Table (5): Meta-analysis of average | ge ICU stay on NMES     | vs UC- Mean  |
| difference:                         |                         | 43           |
| Table (6): Meta-analysis of aver    | age SF-36 scale on I    | NMES vs UC-  |
| Mean difference:                    |                         | 46           |
| Table (7): Meta-analysis of CIM     | incidence on NMES       | vs UC - Odds |
| Ratio:                              |                         | 49           |
| Table (8): Meta-analysis of mort    | ality rate on NMES      | vs UC - Odds |
| Ratio:                              |                         | 52           |
|                                     |                         |              |

## List of Figures

| Fig. ( | No. Title                                                                                             | Page No. |
|--------|-------------------------------------------------------------------------------------------------------|----------|
| Figure | (1): PRISMA flow chart for study selection                                                            | 37       |
| Figure | (2): Forest plot of MRC scale on NMES vs UC - M. difference.                                          |          |
| Figure | (3): Funnel plot of MRC scale on NMES vs UC - M. difference (publication bias was significant)        |          |
| Figure | (4): Forest plot of ICU stay on NMES vs UC - M. difference.                                           |          |
| Figure | (5): Funnel plot of ICU stay on NMES vs UC - Mean differed (publication bias was non-significant)     |          |
| Figure | (6): Forest plot of SF-36 scale on NMES vs UC - M. difference.                                        |          |
| Figure | (7): Funnel plot of SF-36 scale on NMES vs UC - Modifference (publication bias was non-significant)   |          |
| Figure | (8): Forest plot of CIM incidence on NMES vs UC – C<br>Ratio.                                         |          |
| Figure | (9): Funnel plot of CIM incidence on NMES vs UC – C<br>Ratio (publication bias was non-significant)   |          |
| Figure | (10): Forest plot of mortality rate on NMES vs UC – C Ratio.                                          |          |
| Figure | (11): Funnel plot of mortality rate on NMES vs UC – C<br>Ratio (publication bias was non-significant) |          |

#### Introduction

Generalized muscle weakness, which develops during the course of an ICU admission, and for which no other cause can be identified besides the acute illness or its treatment, is labeled "intensive care unit acquired weakness" (ICUAW), that is classified into three component conditions: Critical (CIM). illness myopathy critical illness polyneuropathy (CIP), and the overlap, critical illness polyneuromyopathy (CIPNM). It is the most common cause of neuromuscular weakness in the intensive care setting and a common cause of failure to wean from the ventilator, prolonged ICU stay, increased mortality rate, increased long term disability and reduced quality of life after ICU discharge (Hermans et al., 2015).

Bolton et al first described a small case series of patients with various causes for ICU admission and subsequently for invasive ventilation, of which all of these patients progressed to flaccid quadriparesis, inability to wean from the ventilator and electro-diagnostic findings consistent with a severe motor and sensory polyneuropathy (Bolton et al., 1984).

#### Datroduction

The incidence of CIM and CIP is approximately 40% of critically ill patients who were admitted to intensive care units (*Appleton et al.*, 2015).

CIM manifests clinically with diffuse symmetric muscle weakness involving all extremities and respiratory muscles especially the diaphragm. Muscles of the face are usually spared, but rarely eye muscles may be weakened leading to ophthalmoplegia (*Hermans et al.*, 2015).

### **Aim of the Work**

The objective of this systematic review and metaanalysis was to evaluate the efficacy and safety of neuro muscular electrical stimulation (NMES) combined with usual care (UC) in comparison with usual care alone for preventing skeletal muscle weakness and wasting in critically ill patients with Critical Illness Myopathy (CIM).

Given the potential use of NMES among patients with a limited capacity to engage in voluntary muscle work, assessment of the evidence for the use of NMES in critically ill patients is needed.

### A- Incidence:

ICUAW syndromes are common in the ICU and their approximate incidence as a group is about 40%. The evaluation of their incidence is affected by the underlying disease process, diagnostic criteria used, and timing of diagnostic evaluation (*Appleton et al.*, 2015).

There are specific disease processes that are associated with higher incidence of ICUAW; in sepsis and systemic inflammatory response syndrome (SIRS), the rate is much higher at 70% (*Tennila et al., 2000*). Acute respiratory distress syndrome (ARDS) can also result in ICUAW with reported rates of 60% (*Bercker et al., 2005*).