

Comparing The Efficacy And Safety Of Treatment With Fixed Dose Of Tadalafil Or Tamsulosin And Their Combination Therapy In Patients With Benign Prostatic Hyperplasia And Erectile Dysfunction

Thesis

Submitted for Partial Fulfillment of Master Degree in Urology

Βγ Kirolos Nabil Habib

Bachelor of Medicine and Surgery, Ain Shams University

Under Supervision of **Dr. Hany Mostafa Abdallah**

Professor of Urology Faculty of Medicine - Ain Shams University

Dr. Ahmed Radwan

Lecturer of Urology Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

Acknowledgment

First and foremost, I feel always indebted to GOD, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Hany**Mostafa, Professor of Urology, Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed**Radwan, Lecturer of Urology, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Kirolos nabil

To

My Dear father and mother

Who gave me too much And received too little

To My LOVE & My Brother

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	vi
Introduction	1
Aim of the Work	8
Review of Literature	
Prostate Gland and Pathophysiology of BPH	9
Diagnosis of BPH & Erectile Dysfunction	29
Treatment of BPH & ED	41
Patients and Methods	62
Results	66
Discussion	92
Summary and Conclusion	104
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Early investigations in the ge	
Table (2):	The International Prostate Symptom	Score 32
Table (3):	The International Index of En Function (IIEF-5) Questionnaire	
Table (4):	Alpha blockers drugs	48
Table (5):	Descriptive statistics and results of way ANOVA test for comparison be age values in the three groups	tween
Table (6):	Descriptive statistics for IPSS score three groups	
Table (7):	Descriptive statistics and result repeated measures ANOVA test comparison between IPSS score in three groups	t for n the
Table (8):	Descriptive statistics and result repeated measures ANOVA test comparison between IPSS score different time periods within each group	t for e at
Table (9):	Descriptive statistics and results of way ANOVA test for comparison be percentage changes in IPSS score if three groups	tween n the
Table (10):	Descriptive statistics for Qmax in three groups	
Table (11):	Descriptive statistics and result repeated measures ANOVA test comparison between Qmax in the groups	t for three

List of Tables Cont...

Table No.	Title Page N	10.
Table (12):	Descriptive statistics and results of repeated measures ANOVA test for comparison between Qmax at different time periods within each group	76
Table (13):	Descriptive statistics and results of Kruskal-Wallis test for comparison between percentage changes in Qmax in the three groups	77
Table (14):	Descriptive statistics for PVRU in the three groups	79
Table (15):	Descriptive statistics and results of Kruskal-Wallis test for comparison between PVRU in the three groups	81
Table (16):	Descriptive statistics and results of Friedman's test for comparison between PVRU at different time periods within each group	82
Table (17):	Descriptive statistics and results of one- way ANOVA test for comparison between percentage changes in PVRU in the three groups	84
Table (18):	Descriptive statistics for IIEF score in the three groups	85
Table (19):	Descriptive statistics and results of repeated measures ANOVA test for comparison between IIEF score in the three groups	87
Table (20):	Descriptive statistics and results of repeated measures ANOVA test for comparison between IIEF score at different time periods within each group	88

List of Tables Cont...

Table No.	Title	Page No.
Table (21):	Descriptive statistics and Kruskal-Wallis test for between percentage changes in the three groups	comparison n IIEF score
Table (22):	Descriptive statistics and Fisher's Exact test for compari adverse effects in the three gro	results of son between

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The seminal vesicle and vasa vas formation	
Figure (2):	Development of Cowper's gland	11
Figure (3):	Prostate anatomy	14
Figure (4):	Appearance of BPH in prostate	15
Figure (5):	Transverse section of the penis	21
Figure (6):	Urinary flow meter	35
Figure (6):	Prostaglandin E1 is injected into cavernosa	_
Figure (7):	Mechanism of action alpha blockers	46
Figure (8):	Chemical structure of tamsulosin	49
Figure (9):	Regulation of penile corpus cave smooth muscle relaxation and e PDE5 inhibitors	effect of
Figure (10):	PDE5 structure shows two subunits and each has a catalytic and a regulatory domain	domain
Figure (11):	Chemical structure of Tadalafil	58
Figure (13):	Bar chart representing mean and st deviation values for IPSS scores three groups	in the
Figure (14):	Line chart representing meastarndard deviation values for IPS by time in each group	S scores
Figure (15):	Bar chart representing mean and st deviation values for percentage char IPSS scores in the three groups	anges in

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Bar chart representing mean and s deviation values for Qmax in t groups	the three
Figure (17):	Line chart representing me starndard deviation values for time in each group	Qmax by
Figure (18):	Bar chart representing mean and a deviation values for percentage cl Qmax in the three groups	nanges in
Figure (19):	Bar chart representing mean and a deviation values for PVRU in a groups	the three
Figure (20):	Line chart representing me starndard deviation values for latime in each group	PVRU by
Figure (21):	Bar chart representing mean and sideviation values for percentage clayers	nanges in
Figure (22):	Bar chart representing mean and sideviation values for IIEF score three groups	s in the
Figure (23):	Line chart representing me starndard deviation values for III by time in each group	EF scores
Figure (24):	Bar chart representing mean and sideviation values for percentage classifier scores in the three groups	nanges in
Figure (25):	Bar chart representing preva adverse effects in the three groups	

List of Abbreviations

Abb.	Full term
ACD	American College of Physicians
	Adrenergic Receptor
	Adenosine Triphosphate
	American Urological Association
	Acute Urinary Retention
	Bladder Outlet Obstruction
	Benign Prostatic Enlargement
	Benign Prostatic Hyperplasia
	Blood Urea Nitrogen
	Cyclic Adenosine Monophosphate
	Cyclic Adenosine Monophosphale Corpora Cavernosa
	Cyclic Guanosine Monophosphate
	Dihydrotestosterone
	Digital Rectal Examination
	Erectile Dysfunction
	Estimated Glomerular Filtration Rate
	Endothelial Nitric Oxide Synthase
	Food and Drug Administration
	Guanosine-50-Triphosphate
	Hematoxylin and Eosin
	International Index of Erectile Function
	Inositol Trisphosphate
	International Prostate Symptom Score
	Inter-Quartile Range
	Luteinizing Hormone
	Lower Urinary Tract Symptoms
	Massachusetts Male Aging Study
	Medicated Urethral System for Erections
	Amino Terminus

List of Abbreviations (Cont...)

Abb.	Full term
NIH	.National Institutes of Health
NO	•
	.Nitric Oxide Synthase
P	
	Pulmonary Arterial Hypertension
	. Phosphodiesterase
	. Phosphodiesterase Type 5
	. Prostaglandin E1.
	. Prostate-Specific Antigen
	. Postvoid Residual
<i>PVRU</i>	. Postvoid Residual Urine
PZ	. Peripheral Zone
QOL	. Quality of Life
S	. Serine
sGC	. Soluble Guanylate Cyclase
<i>SHBG</i>	.Sex Hormone-Binding Globulin
SPSS	. Statistical Package for Social Science
<i>TGF</i>	.Transforming Growth Factor
<i>TSH</i>	. Thyroid-Stimulating Hormone
TUIP	. Transurethral Incision of the Prostate
<i>TUMT</i>	. Transurethral Microwave Therapy
TUNA	. Transurethral Needle Ablation of the Prostate
TURP	. Transurethral Resection of the Prostate
TZ	. Transitional Zone
<i>UGS</i>	. Urogenital Sinus

Introduction

enign prostatic hyperplasia (BPH) is a disorder characterized by a proliferation of both stromal and epithelial cells of the prostate in the transitional zone surrounding the urethra (Roehrborn, 2008; Chughtai et al., 2016).

BPH is a common diagnosis among the ageing male population with increasing prevalence (Chughtai et al., 2016).

BPH can be defined as a histopathological change consisting of both glandular and fibromuscular hyperplasia. It is estimated that 10% of men in their 50s and almost 90% of men over 80 have BPH (Vuichoud and Loughlin, 2015).

BPH is a frequent cause of lower urinary tract symptoms (LUTS) in men and is a common histological finding particularly in ageing men. Although 'normal' prostates in adult men are typically 15–30 ml in volume, and glands >30 ml are commonly deemed 'enlarged', no strict cutoff value has been defined and, for many physicians, enlarged prostate volume is a subjective finding on examination. Furthermore, the extent of prostatic enlargement varies considerably because the extent of hyperplasia is variable (*Lepor*, 2005).

LUTS affect one-third of men over 55 and half of men over 65 and while LUTS due to BPH (LUTS/BPH) are generally thought of as a disease of older men the costs of

treating this disease start accruing when patients are in their 40s (Sterling et al., 2019).

Many risks factors, both modifiable and non-modifiable, can increase the risk of development and progression of BPH and (lower urinary tract symptoms) LUTS. The symptoms can be obstructive (resulting in urinary hesitancy, weak stream, straining or prolonged voiding) or irritative (resulting in increased urinary frequency and urgency, nocturia, urge incontinence and reduced voiding volumes), or can affect the patient after micturition (for example, postvoid dribble or incomplete emptying) (Chughtai et al., 2016).

About half of men with BPH develop an enlarged prostate gland, called benign prostatic enlargement (BPE) among these, about half develop some degree of bladder outlet obstruction (BOO). BOO and/or changes in smooth muscle tone and resistance that can accompany BPH may result in LUTS (*Liu et al.*, 2017).

BPH results in compression of the urethra, causing resistance to urine flow known as bladder outlet obstruction (BOO). This resistance can also result in obstruction-induced changes of bladder function, such as overactivity of the detrusor muscle or, conversely, reduced contractility of the detrusor muscle. BOO can present as LUTS, infections or retention, as well as other conditions. BPH and BOO impose

considerable burden on the health of older men and on health care costs (Chughtai et al., 2016).

The relationship between LUTS and erectile dysfunction (ED) have received increased attention recently because both diseases are highly prevalent, frequently co-associate in the same aging male group, and contribute significantly to the overall quality of life. The link between ED and LUTS has biologic plausibility given the four leading theories of how these diseases interrelate. These explanations fall into four theories each with a variable amount of supporting data. These include: (1) NOS/NO levels decreased or altered in the prostate and penile smooth muscle, (2) Autonomic hyperactivity effects on LUTS, prostate growth and ED., (3) increased Rho-kinase activation/endothelin activity, and (4) prostate and penile ischemia (McVary, 2005).

LUTS associated with BPH is a highly impactful condition that is often undertreated and can be bothersome and negatively impact on a patient's quality of life (QoL). LUTS/BPH have a major impact on men, their families, health services and society (Speakman and Cheng, 2014).

Treatment for LUTS/BPH remains largely driven by patient symptomatology with medical therapy or watchful waiting as the first-line management strategies (Sterling et al., 2019).

Lifestyle interventions such as modifying fluid intake or toileting behavior are typically the first-line treatments to reduce symptoms in patients with LUTS/BPH. When necessary, pharmacological treatment also may be initiated to reduce symptoms and prevent or delay disease progression (Strittmatter et al., 2013).

Many medical and surgical treatment options exist. Surgery should be reserved for patients who either have failed medical management or have complications from BPH, such as recurrent urinary tract infections, refractory urinary retention, bladder stones, or renal insufficiency as a result of obstructive uropathy (Kim et al., 2016).

Apart from medications, one important strategy is advice on exercise and diet, encouraging the patient to self-manage his disease. This may help to reduce the need for surgery with its many possible side effects and long term recurrence (Lim, 2017).

The current standard of care for LUTS/BPH includes αadrenergic blockers, 5α-reductase inhibitors, used alone or in combination. These therapies are associated with bothering sexual side effects. The primary goals of LUTS attributed to BPH treatment are to reduce LUTS, improve prostate-related quality of life, and prevent or delay disease progression (Strittmatter et al., 2013).