

بسم الله الرحمن الرحيم

-C-02-50-2-

شبكة المعلومات الجامعية التوثيق الالكتروني والميكرونيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

بالرسالة صفحات لم ترد بالأصل

Comparison between Myoring[®] and 355°KERATACx[®] in Management of Keratoconus

Thesis

Submitted for Partial Fulfillment of M.D.

Degree in Ophthalmology

By

Eman Samir Muhammed Edrees

M.B., B.Ch, M.Sc. Ophthalmology Ain-Shams University

Supervised by

Prof. Dr. Fekry Mohamed Fathy Zaher

Professor of Ophthalmology Faculty of medicine, Ain-Shams University

Prof. Dr. Ahmed Hassan Samir Assaf

Professor of Ophthalmology Faculty of medicine, Ain-Shams University

Dr. Mohamed Omar Yousef

Assistant Professor of Ophthalmology Faculty of Medicine, Ain-Shams University

Dr. Ahmed Abdelmonsef Abdelhamid Ebeid

Lecturer of Ophthalmology
Faculty of Medicine, Ain-Shams University
Faculty of Medicine
Ain-Shams University
Cairo, Egypt
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Fekry Mohamed Fathy Zaher,**Professor of Ophthalmology Faculty of medicine, Ain-Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ahmed Hassan Samir Assaf,**Professor of Ophthalmology Faculty of medicine, Ain-Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Dr. Mohamed Omar Yousef,** Assistant Professor of Ophthalmology Faculty of Medicine, Ain-Shams University, for his kindness, supervision and cooperation in this work.

I am deeply thankful to **Dr. Ahmed Abdelmonsef**Abdelhamid Ebeid, Lecturer of Ophthalmology Faculty of

Medicine, Ain-Shams University, for his great help, active

participation and guidance.

Eman Samir Muhammed Edrees

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Review of Literature	
 Anatomy of the Cornea 	5
Keratoconus	12
Subjects and Methods	42
Results	52
Discussion	62
Summary & Conclusion	76
References	80
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Amsler-Krumeich grading system Different kinds of implants widely a before keratacx and MyoRing, with technical specifications	available th their
Table (3):	Currently available intracornea segments	l ring
Table (4):	Different types and technical specification the currently available keratacx ring s	
Table (5):	Modified nomogram for MyoRing bas readings and pupil size, modified acco surgical preference	ording to
Table (6):	Corneal tunnel parameters	46
Table (7):	Corneal pocket parameters	48
Table (8):	Comparison between groups according demographic data, no statistically sig difference was found between both gro	to their gnificant
Table (9):	Comparison between the two groups re their preoperative parameters, no sta- significant difference was found between groups.	tistically een both
Table (10):	Comparison between groups accor postoperative parameters, table sh statistically significant difference to between both groups	rding to nows no be found
Table (11):	Comparison between groups regarding in all parameters where no star significant difference was detected the two groups.	g change tistically between

List of Tables Cont...

Table No.	Title	Page No.
Table (12):	Comparison between pre and p data regarding all calculated pa group A [Keratax-355] showing significant difference between A	rameters in statistically
Table (13):	pre and post values in group A Comparison between pre and p data regarding all calculated pa group B showing statistically difference between all measure postoperative values in group B	ostoperative rameters in significant ed pre and

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Histopathology of the human showing corneal epithelium, strong Descemet's membrane	ma, and
Figure (2):	Histopathology of corneal epitheli Bowman's membrane	
Figure (3):	Findings mostly seen in severe ker cases Fleisher ring, vogt striae and s	
Figure (4):	RETICS classification system for kera	atoconus26
Figure (5):	INTACS segments seen in place	31
Figure (6):	Cut section in a Kera-ring, shows sharply angled edges, leading in some to tissue trauma with occasional implant extrusion	me cases reported
Figure (7):	On the other hand, cut section of segments, showing their dom surface, with the intentionally rounded borders, avoiding possible traumatization	e-shaped 7 made 9 corneal
Figure (8):	Slit-lamp photo of Myoring in place	38
Figure (9):	Femtosecond laser tunnel creat Keratacx 355 ring segment implanta	tion for
Figure (10):	Keratacx 355 ring implant seen is within corneal tunnel follow implantation.	ing its
Figure (11):	Femtosecond laser pocket created Myoring implantation.	
Figure (12):	Myoring held with its special force before its insertion into corneal pock	_
Figure (13):	Myoring seen in its corneal pocket its insertion.	_

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (14):	Bar chart between groups acc (years)	
Figure (15):	Bar chart between groups accor	rding to sex53
Figure (16):	Collective Bar chart re Comparing between both grou to the change in all parameters	aps according
Figure (17):	Bar chart representing compart the two groups according to ch UCVA.	nange in their
Figure (18):	Bar chart representing compart the two groups according to ch BCVA	nange in their
Figure (19):	Preoperative pentacam image from group-A designated KERATACx 355° ring segment	to have
Figure (20):	Postoperative pentacam of the patient, following KERATACx implantation, showing impressing all parameters regularization of corneal surface	355° segment rovement of with more
Figure (21):	Pre (top) and post (bottom pentacam of a group-B patien following Myoring implantation	nt before and

List of Abbreviations

Abb.	Full term
BCVA	. Best corrected visual acuity
CH	. Corneal Hysteresis
CIM	. Corneal irregularity measurement
CISIS	. Corneal intra-stromal implantation system
CRF	. Corneal resistance factor
DNA	. Deoxyribonucleic acid
ICRS	. Intracorneal ring segments
IOP	. Intraocular Pressure
IOPCC	. Corneal-Compensated Intraocular Pressure
I-S	. Inferior-superior
K	. keratometric reading
Kc	. Keratoconus
KCI	. Keratoconus classification index
KPI	. Keratoconus prediction index
Max K	. Maximum keratometric reading
Mean K	. Mean keratometric reading
OD	. Oculus dextrus
ORA	. Ocular response analyzer
OS	. Oculus sinister
PMMA	. Polymethyl- methacrylate
SAI	. Surface asymmetry index
SE	. Spherical equivalent
SRI	. Surface regularity index
TGCK	. Topography-guided conductive keratoplasty
UCVA	. Uncorrected visual acuity

INTRODUCTION

Teratoconus is a progressive, non-inflammatory, bilateral (but usually asymmetrical), degenerative disease of the cornea, characterized by paraxial stromal thinning that leads to corneal surface distortion. Visual loss occurs primarily from irregular astigmatism and myopia and secondarily from corneal scarring (Karseras and Ruben, 1976; Kennedy et al., 1986).

The pathological process as a number of studies have indicated is that keratoconic corneas show signs of increased activity by proteases, a class of enzymes that break some of the collagen cross-linkages in the stroma, with a simultaneous reduced expression of protease inhibitors. This results in a reduction in the corneal thickness and biomechanical strength (Andreessen et al., 1980; Spoerl et al., 2004).

Keratoconus remains one of the main indications for performing perforating transplantation of nevertheless, in recent years there has been ever increasing use of methods which can have a favorable influence on the course of the disease, and thus decrease (or even eliminate) the necessity of transplantation, of these methods is implantation of intrastromal ring segments, the purpose of which is to flatten the central part of the cornea and regularize it, which in its result may lead to an improvement of the patient's visual acuity and by this helps to relieve major parts of patients' complaints (Studeny et al., 2015).