

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Medicine Internal Medicine Department

Relation of Lactobacilli Acidophilus To Obesity in Egyptian Population

Thesis

Submitted for Partial Fulfillment of the Master Degree in Internal Medicine

By

Hany Naser Abbas Hany

(M.B. B. Ch. 2011) Resident of Internal Medicine

Under Supervision of

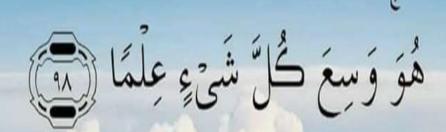
Prof.Dr. Maha Abdelaziz Ahmed Eltouny

Professor of Internal Medicine
Faculty of Medicine
Ain Shams University

Prof.Dr. George Safwat Riad

Assistant Professor of Internal Medicine
Faculty of Medicine
Ain Shams University

Dr. Rasha Samir Mohammed


Lecturer of Internal Medicine Faculty of Medicine

Ain Shams University

Faculty of Medicine Ain Shams Universit 2020

قال تعالى

إِنَّمَا إِلَاهُكُمُ ٱللَّهُ ٱلَّذِى لَا إِلَاهُ إِلَّا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ الله

سُولَةً خُلِيًا

First and foremost, my deep gratefulness and indebtedness is to Allah, "The Most Gracious and The Most Merciful".

I would like to express my sincere gratitude to **Prof. Dr.**Maha Abdelaziz Ahmed Eltouny Prof. of Internal Medicine,
Faculty of Medicine, Ain Shams University, who offered me advice
during the present work. I will appreciate her continuous guidance,
valuable directions, extensive revision, objective criticism, and she
was helping me to overcome many difficulties during the study.

In addition, my deep appreciation and sincere thanks to **Prof. Dr. George Safwat Riad** Assistant Prof. of Internal Medicine,
Faculty of Medicine, Ain Shams University, for his valuable and
expert supervision. He offered me advice during the present work.
His kind insight and encouragement helped me to bring out the
best work.

Furthermore, I would like to express my sincere gratitude to **Dr. Rasha Samir Mohammed**, Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams University, for her continuous guidance, sincere help during the stages of this work, and for her continuous advice and encouragement during the preparation of the thesis.

At last but not least all thankfulness, deep respects to Internal Medicine department, Faculty of Medicine, Ain Shams University and Ain Shams university laboratory where the study is done.

> Hany Naser Abbas Hany 2020

Table of Contents

Subjects	Page
List of table	I
List of figures	II
List of abbreviations	IV
Abstract	X
I. Introduction	1
II. Aim of the work	4
III. Review of literature	
✓ Obesity	5
✓ Gut microbiota	28
✓ Gut microbiota and obesity	53
✓ Modulation of gut microbiota	61
IV. Patients and Method	67
V. Results	83
VI. Discussion	102
VII. Summary& Conclusion	117
VIII. References	121
الملخص العربي	_

List of Tables

Table No.	Title	Page
1	WHO classification of obesity by BMI, waist	
2	circumference, and associated disease risk. Influence of diet and the intestinal microbiome on gut barrier function	33
3	Mean Age for both Studied Groups (non-obese controls and obese cases):	
4	Distribution of study population by gender	84
5	Frequencies and percentages of diabetic patients among controls and obese cases	86
6	Waist and hip ratio (WHR) of both groups.	88
7	Mean BMI of controls and obese cases.	88
8	Ultrasound finding among controls and obese cases	89
9	Comparison between control and obese subjects as regards glycated hemoglobin (HbA1c)	91
10	Lipid profile of controls and obese cases.	92
11	Comparison between the obese patients with different US findings as regards Cholesterol, and Triglycerides.	94
12	Stool analysis among controls and obese cases.	95
13	Frequencies and percentages of fecal samples which shows positive expression of Lactobacilli among controls and obese cases.	96
14	Mean value of CT in controls and obese cases	96
15	Correlation between fold changes in expressed of Lactobacilli and age, and BMI.	98
16	Correlation of fold changes in expressed of Lactobacilli with medical history of diabetes, and stool analysis.	100
17	Fold changes in expressed of Lactobacilli in relation to serum HbA1C, and lipid profile	101

List of Figures

Figure No.	Title	Page
1	Increase in prevalence of obesity over time.	7
2	Evolution of obesity prevalence.	8
3	Altered energy balance leads to obesity and metabolic disorders.	
4	Circulating leptin is correlated with the degree of adiposity.	
5	Edmonton Obesity Staging System (EOSS).	27
6	Relative sizes of major host cells and their components versus those of bacteria and viruses	29
7	Distribution of the normal human gut flora	31
8	Main functions of bacteria in the gut.	34
9	Role of gut microbiota in metabolism of different food and health maintenance.	37
10	Proposed complex interactive relationships among gut microbiome, host factors and environmental factors in IBD pathogenesis.	44
11	The role of intestinal microbiota in cardiovascular diseases.	
12	Interplay between diet and the gut microbiome.	50
13	Mechanisms underlying the association between obesity	57
14	Standard curve of ALT	74
15	Standard curve of AST	75
16	Mean Age for both Studied Groups.	84
17	Distribution of the study population by gender.	85
18	Distribution of diabetic patients in both studied groups.	86
19	Waist to hip ratio (WHR) of both groups.	87
20	Mean BMI of controls and obese cases.	88
21	Ultrasound finding among controls and obese cases	90
22	Comparison between control and obese subjects as regards glycated hemoglobin (HbA1c).	91

23	Lipid profile of controls and obese cases.	93
24	Stool analysis among non-obese controls and obese cases.	95
25	Frequencies and percentages of faecal samples which shows positive expression of Lactobacilli among controls and obese cases.	97
26	Comparison between relative Lactobacilli expression levels in both studied groups by RT-PCR.	97
27	Correlation between fold changes and BMI	99
28	Correlation between fold changes and WHR	99
29	Correlation between fold changes and CT by RT PCR	100
30	Correlation between fold changes and TGs	101

List of Abbreviations

Abbrev.	Full term
4AAP	4-chlorophenol and 4-aminoantipyrine
ACVD	Atherosclerotic cardiovascular disease
ALT	Alanine aminotransferase
AMPk	Adenosine monophosphate kinase
ANOVA	Analysis of variance
ARC	Arcuate nucleus
ASD	Autism Spectrum Disorder
AST	Aspartate aminotransferase
AUC	Area under the curve
BAT	Brown adipose tissue
BBB	Blood-brain barrier
BMI	Body mass index
CART	Cocaine and amphetamine regulated transcript
CD	Crohn's disease
CE	Cholesterol esterase
CHD	Coronary heart disease
ChREBP	Carbohydrate responsive element-binding
	protein
CKD	Chronic kidney disease
CLA	Conjugated linoleic acid
COX	Cholesterol oxidase
CRC	Colorectal cancer
ct	Cycle Threshold
CVD	Cardiovascular disease
DAP	Dihydroxyacetone phosphate
EASO	European Association for the Study of Obesity
ELISA	Enzyme-linked immunosorbent assay
EOSS	Edmonton Obesity Staging System
FIAF	Fasting induced adipocyte factor
FISH	Fluorescence in situ hybridization
FMO3	Flavin monooxygenases
FMT	Faecal microbiota transplantation

Abbrev.	Full term
FT3	Free serum tri-iodothyronin
GALT	Gut associated lymphoid tissues
GF	Germ-free
GHb	Glycosylated Haemoglobin
GI	Gastrointestinal
GWAS	Genomewide association studies
Hb A1c	Hemoglobin A1c
HC	Hip circumference
HFD	High-fat diet
HRP	Horseradish peroxidase
HTGL	Hepatic triglyceride lipase
IBD	Inflammatory bowel disease
IBS	Irritable bowel syndrome
IL- 6	Interleukin -6
IR	Insulin resistance
LCAT	Lecithin-cholesterol acyltransferase
LCP	Lactobacillus containing probiotics
LDL	Low density lipoproteins
LFY	low-fat yogurt
LMIC	Low and middle income countries
LPL	Lipoprotein lipase
LPS	Lipopolysaccharides
MRS	Man Rogosa Sharp agar
MS	Metabolic syndrome
NAFLD	Non-alcoholic fatty liver disease
NLR	NOD-like receptors
NPY	Neuropeptide Y
nTS	Nucleus tractus solitarii
OSA	Obstructive sleep apnoea
OTUs	Bacterial operational taxonomic units
PAMPs	Pathogen-associated molecular patterns
PCOS	Polycystic Ovarian Syndrome
PCR	Polymerase chain reaction
POMC	Pro-opiomelanocortin

Abbrev.	Full term
PRR s	Pattern recognition receptors
PY	Probiotic yogurt
<i>qPCR</i>	Quantitative PCR
rRNA	Ribosomal RNA gene
SCFAs	Short-chain fatty acids
SREBP1	Sterol regulatory element-binding transcription factor 1
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus
TGs	Triacylglycerols
TLRs	Toll-like receptors
TMA	Trimethylamine
TMAO	Trimethylamine-N-oxide
<i>TMB</i>	Tetramethylbenzidine
TNF-α	Tumor necrosis factor-α
UC	Ulcerative colitis
VLDL	Very low density lipoproteins
WAT	White adipose tissue
WC	Waist circumference
WHO	World Health Organization
WHR	Waist-to-hip ratio
WHtR	Waist-to-height ratio

ABSTRACT

Background: Current considerations are existed about the sharing role of gut microbiota in the enhancement of obesity and its allied comorbidities

Objective: The aim of this observational case-control study was to assess the possible relation of *lactobacilli acidophilus* to obesity in a sample of Egyptian population by real-time PCR of *lactobacilli acidophilus* in stool.

Subjects and methods: The present study enrolled 20 healthy slim subjects and 40 subjects who had BMI >25 kg/m². Routine laboratory analysis and identification of stool *Lactobacillus acidophilus* by quantitative real time PCR technique was performed for all enrolled subjects.

Results: Lactobacillus *acidophilus* was expressed in 21 out of 40 (52.5%) faecal samples of obese cases and 16 out of 20 (80%) of faecal samples of non-obese cases. In rest of samples in both studied groups, the expression was below the detection limit. The results showed that the mean CT at which Lactobacilli were expressed in the obese cases was (38.89 ± 2.57) compared to (36.08 ± 4.63) in non-obese cases and this indicated that the expression of lactobacilli was statistically higher in non-obese subjects compared to obese cases (P = 0.04).

Conclusion: *Lactobacillus acidophilus* was significantly lowered in obese Egyptian patients. The argument about the significance of correlation between imbalance in gut microbiota and obesity is considered one of the hottest open topics in medicine.

Key words: Obesity, Gut Dysbiosis, Lactobacilli acidophilus.

Introduction

The prevalence of obesity has risen steeply over the past two decades, and it has become a significant global health issue (*Arroyo-Johnson et al* 2016).

The proper management of obesity is critical to prevent the development of obesity-associated metabolic disorders, including insulin resistance, diabetes, and cardiovascular disease, which increase patient mortality (*Gallagher et al.*, 2015; *Bastien et al.*, 2014).

Lipid accumulation and increased systemic inflammation in obesity is known to trigger an imbalance of energy homeostasis and abnormal cellular responses to insulin, leading to insulin resistance and type 2 diabetes (Samuel and Shulman, 2012).

Although a number of therapies have been developed to treat them, the disease remains largely irreversible, with many patients failing to respond satisfactorily to treatment, underlining the importance of prevention at the early stages of obesity and insulin resistance (*Alberti et al.*, 2007).

The gut microbiome is composed of a thousand of bacterial species that are encoding approximately 3.3 million genes and largely shared 160 species individually (*Arumugam et al 2010*). It is also known to have a profound impact on host physiology and pathology. The diversity and stability of the gut microbiome in host organisms can, in turn, be affected by diverse environmental factors, including food consumption, which ultimately influences host metabolism (*David et al., 2014*).

Changes to the gut microbiota are associated with the development of obesity and type 2 diabetes. Furthermore, targeting the gut microbiome using