

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Ain Shams University Faculty of Engineering Structural Engineering Department

Evaluation of Shear Bond Strength between Repair Materials and Substrate Concrete

By

Noura Elsayed Abdelsadek Elsayed

B.Sc Civil Engineering Ain Shams University, 2010

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Structural Engineering

Supervised By

Dr. Khalid Mohamed Morsy

Associate Professor Structural Engineering Dept Faculty of Engineering Ain Shams University

Dr. Mohamed Ragab Masoud

Assistant Professor Structural Engineering Dept Faculty of Engineering Ain Shams University

STATEMENT

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

INFORMATION ABOUT THE RESEARCHER

Name : Noura Elsayed

Abdelsadek

Date of birth : 27 April 1985

Place of birth : Elsharkia, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Structural Engineering

University issued the degree : Ain Shams

Date of issued degree : July 2010

Current job : Senior Engineer

Technical office Dept.,

Memmar Elmorshedy Company

ABSTRACT

Nowadays, application of adding a fresh concrete layer (Overlay) to a hardened one (Substrate) has been used widely as a main in mass concrete, concrete replacement, and concrete jacketing. Deterioration of concrete structures usually begins at the surface of structural members, and progresses into the structure. The most common strengthening technique is adding a new concrete layer to increase the member effective size.

Bond tests between repair materials and substrate concrete have been developed for several specific applications. Till now there is no consensus among practitioners for evaluating the bond strength under a shear state of stress that is commonly encountered in concrete structures. It is simple to carry out tension bond test in situ or in laboratory than shear bond test. The main aim of this work is to try to find out correlations between tensions and shear bond tests. The main objective of the experimental program is to evaluate the tension and the shear bond strength between substrate concrete and overlay repair materials, and to find correlations between shear bond strength and tension bond strength. Several parameters were adapted to evaluate the bond strength

Experimental work was carried out including casting thirty six concrete slabs specimens with dimension 500*500*200 mm overlaid with different types of repair materials. Concrete slab specimens were prepared using three different grades of substrate concrete, three different types of overlaid repair materials, three different types of surface bonding agents, and two different interface roughness methods. One hundred and eight locations on prepared slabs were tested in tension. One hundred and eight specimens were drilled and tested in direct shear. Test results show strong correlation between both tension and shear bond strength between repair materials and substrate concrete. Experimental relations between tension and shear bond strength were estimated.

Keywords

Bond strength, Tensile strength, Shear strength, Bonding materials, Surface roughness.

ACKNOWLEDGEMENT

First and Foremost praise is to ALLAH, the Almighty, the greatest of all on whom ultimately we depend for sustenance and guidance. His continuous grace and mercy was with me throughout my life and ever more during the tenure of my research.

I would like to express my deepest thanks and appreciation to my supervisors, Dr. Khaled Mohamed Morsy, Dr. Mohamed Ragab Masoud for their valuable assistance, guidance, patience and endless support throughout this research, and reviewing of the manuscript are greatly acknowledged. I am grateful to their all for having the opportunity to work under their supervision.

The experimental work was carried out at the Properties and Testing of Materials Laboratory of the Structural Engineering Department of Ain- Shams University. The help of the laboratory staff in developing work is greatly appreciated.

Finally, I would like to thank my family for their continuous encouragement, overwhelming support, fruitful care and patience, especially during the hard times

TABLE OF CONTENTS

	Page
ABSTRACT	i
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	Xi
LIST OF TABLES	xviii
CHAPTER (1):INTRODUCTION	1
1.1 Back ground	1
1.2 Objectives	2
1.3 Scope	3
1.4 Thesis Organization	3
CHAPTER (2):Literature Review	5
2.1 Introduction	5
2.2 Causes of damages	7
2.3 Rehabilitation and repair method	11
2.4 Repair Technique	12
2.5 Bonding in Concrete	14
2.5.1 Definition of The Bond Strength	14
2.5.2 Importance of Bonding in Concrete Repairs	15

2.5.3 Mechanics of Bond Strength	16
2.5.4 Bonding Agent	19
2.5.4.1 Modified Cement Materials	19
2.5.4.2 Epoxy Adhesives	21
2.5.4.3 Polyester Adhesives	22
2.5.4.4 Acrylic Adhesives	23
2.5.4.5 Polyurethane Adhesives	23
2.5.5 Main Factors Influence Bond	24
2.5.5.1 Cleanliness	24
2.5.5.2 Surface Preparation	24
2.5.5.2.1 Removal and Micro Cracks	24
2.5.5.2.2 Surface Roughness and Micro Cracks	28
2.5.5.2.3 Rebar and Reinforcement Cleaning	29
2.5.5.2.4 Cleaning After Removal	29
2.5.5.2.5 Overlay Curing and Temperature Effect	29
2.5.6 Secondary Factors Influencing Bond	32
2.5.6.1 Overlay properties	32
2.5.6.2 Pre wetting	34
2.5.6.3 Time	34
2.5.6.3.1 Short Term Bond Properties	35

2.5.6.3.2 Long Term Bond Properties	35
2.5.6.4 Bonding Agent	36
2.5.6.5 Water to Cement (w/c) Ratio	36
2.6 Tests Used to Asses Bond Strength	37
2.6.1 General Classification	37
2.6.2 Tension Tests	38
2.6.2.1 Pull-off Test	38
2.6.2.2 Allowable Bond Strength Record By Pull-off Test	41
2.6.3 Compressive Shear Test	42
2.6.3.1 Slant Shear Test	42
2.6.4 Shear Test	44
2.6.4.1 Direct Shear Test	45
2.6.4.2 Bi-Surface Shear Test	48
2.6.5 Torsion Test	49
2.6.5.1 Twist –off test	49
2.6.6 Tests with Indirect Tension	50
2.6.7 Comparison of Test Methods	50
2.6.7.1 Shear vs. Tensile Bond Strength	50
2.6.7.2 Experimental Studies Made for Tests Correlation	52

Chapter(3) Programme of Experimental Work	56
3.1 Introduction	56
3.2 Objective	56
3.3 Experimental Program	57
3.3.1 Test Specimens	62
3.3.2 Roughened Test Specimens	65
3.3.2.1 Mechanical roughened test specimens	65
3.3.2.2 Acid etching roughened test specimens	65
3.3.3 The Concrete - to - Concrete Bond Strength	67
3.3.3.1 Tension bond strength (Pull off test)	68
3.3.3.1.1 Test Procedure	69
3.3.3.2 Shear Bond Strength (Shear Bond test)	70
3.3.3.2.1 Test Procedure	71
3.4 Material Characterized Used in Experimental Work	72
3.4.1 General	72
3.4.2 Materials for Concrete	72
3.4.2.1 Cement	72
3.4.2.2 Fine Aggregate	73
3.4.2.3 Coarse Aggregate	74

3.4.2.4 Mixing Water	76
3.4.3 Concrete Mixes	76
3.4.3.1 Substrate Concrete	76
3.4.3.2 Overlay Concrete	76
3.4.3.3 The Slump Test	77
3.4.3.4 The Compressive Strength Test	78
3.4.4 Bonding Material	81
3.5 The Experimental Work	85
3.5.1 Concrete Manufacture	85
3.5.2 Curing of Substrate	88
3.5.3 Surface Preparation	88
3.5.3.1 Mechanical Roughening	89
3.5.3.2 Acid Etching	90
3.5.4 Application of Bonding Material	92
3.5.4.1 Cleaning The Substrates Surface	92
3.5.4.2 Mixing The Bonding Materials	94
3.5.4.3 Application	94
3.5.5 Overlay Concrete	97
3.6 Applying Tests	99
3.6.1 Equipment and Instruments	99
3.6.1.1 Partial Coring (Preparing Test Specimens)	99

3.6.1.2 The Tension Load Application (Pull-off Test)	102
3.6.1.3 The Shear Load Application (Direct Shear test strength)	104
Chapter (4) Test Results and Discussion	107
4.1 Introduction	107
4.2 Bond Strength in Tension	107
4.2.1 Test Results	109
4.2.1.1 Identification of The Failure Modes	109
4.2.1.2 The Test Results	113
4.2.1.3 Failure Modes of Test Specimens	119
4.2.2 Discussion of Test Results	121
4.2.2.1 Introduction	121
4.2.2.2 Effect of Bonding Agent's Type of Pull-off Bond Strength	121
4.2.2.3 Effect of Substrate's Surface Roughness on Pull-off Bond Strength	127
4.2.2.4 Effect of Concrete quality type on Pull-off Bond Strength	133
4.3 Bond strength in Shear	139
4.3.1 Test Results	140
4.3.1.1 Identification of The Failure Modes	140
4 3 1 2 The Test Results	142