

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

GENOTYPING OF HUMAN AND ANIMAL ISOLATES OF ECHINOCOCCUS GRANULOSUS FROM EGYPT

Thesis submitted to Faculty of Medicine, Ain Shams
University for Partial Fulfillment of M.D. degree in Medical
Science (Medical Parasitology)

By

Doaa Ashraf Nassar

M.B., B.Ch., M.Sc, Assistant lecturer of Medical Parasitology Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Khalifa El Sayed Khalifa

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Prof. Dr. Hala Salah Elwakil

Professor of Medical Parasitology
Faculty of Medicine, Ain Shams University

Prof. Dr. Hayam Mohammed Ezz Eldin

Professor of Medical Parasitology Faculty of Medicine, Ain Shams University

Dr. Hanan Mahmoud Mohamed Abou Seri

Lecturer of Medical Parasitology Faculty of Medicine, Ain Shams University

Medical Parasitology Department Faculty of Medicine Ain Shams University 2020

First of all, I would like to express my deep gratitude to **Allah** for his care and generosity throughout my life, which permitted the completion of this piece of work.

No words can express my sincere gratitude and deep appreciation to **Prof. Khalifa El Sayed Khalifa**, Professor of medical parasitology, Faculty of Medicine, Ain Shams University, for his precious advice and continuous guidance throughout the whole work. I am so grateful for his motivation, enthusiasm, immense knowledge, endless patience, and support.

I am very thankful to **Prof. Hala Salah Elwakil**, Professor of medical parasitology, Faculty of Medicine, Ain Shams University, for her keen supervision and guidance and her overwhelming support throughout this work.

I am thankful to **Prof. Hayam Mohammed Ezz Eldin**, professor of medical parasitology, Faculty of Medicine, Ain Shams University, for her kind help and encouragement.

I would also like to express my great thanks to **Dr. Hanan Mahmoud**Mohamed Abou- Seri, Lecturer of medical parasitology, Faculty of

Medicine, Ain Shams University, whose encouragement and knowledge
supported me over the entire course of this research, for the overwhelming
continuous support and effort and for being beside me whenever I need
her.

Special thanks to my **family** for their help and support, I could not have reached this point in my life without their prayers and continuous support.

Last but not least, thanks to my friends and all members of the Parasitology department, Faculty of Medicine, Ain Shams University, for their great help, support, love, and care. I find myself overwhelmed in offering them all my thanks.

List of Abbreviations

Α	Adenine
AFLP	Amplified fragment length polymorphism
AgB	Antigen B
Alul	Arthrobacter luteus I
Atp6	ATP synthase subunit 6
AW1	Wash buffer 1
AW2	Wash buffer 2
BLAST	Basic Local Alignment Search Tool
BMZ	Benzimidazole
bp	base pair
BSA	Acetylated Bovine Serum Albumin
buffer AE	Elusion Buffer
Buffer AL	Lysis buffer
Buffer ATL	Tissue lysis buffer
С	Cytosine
CE	Cystic echinococcosis
Cm	Centimeter
cDNA	Complementary DNA
cox1	Cytochrome c oxidase 1
СТ	Computerized tomography
Cytb	Cytochrome b
ddF	dideoxy fingerprinting
ddH2O	Deionized distilled water
ddNTPs	Dideoxynucleoside triphosphates
DNA	Deoxyribonucleic acid

dNTPs	Deoxynucleoside triphosphates
E.	Echinococcus granulosus
granulosus	
E.	Echinococcus granulosus senso lato
granulosus s.l.	
E.	Echinococcus granulosus senso stricto
granulosus	Lenmococcus granaiosus senso seneco
s.s.	
EDTA	Ethylene-diamine-tetra-acetic-acid
ELISA	Enzyme-linked immune sorbent assay
Fig.	Figure
G	Guanine
g	Gram
HaeIII	Haemophilus aegyptius III
HCF	Hydatid cyst fluid
Hinfl	Haemophilus influenza I
IHAT	Indirect haemagglutination test
ITS1	Internal transcribed spacer gene I
kDa	Kilo Dalton
LAMP	Loop Mediated Isothermal Amplification
Mg	Milligram
μg	Microgram
MgCl2	Magnesium chloride
μΙ	Microliter
ml	Milliliter
mm	Millimeter
μΜ	Micro Molar

mM	Milli Molar
mg/kg	Milligram/kilogram
MRI	Magnetic resonance imaging
mtDNA	Mitochondrial DNA
ND	Not determined
No.	Number of samples
nad1	NADH dehydrogenase subunit 1
NADH	Nicotinamide adenine dinucleotide hydrogen
NCBI	National Center for Biotechnology Information
PAIR	Puncture, aspiration, injection, and reaspiration
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
PCR-RFLP	Polymerase chain reaction-restriction
	fragment length polymorphism
PT	Percutaneous treatment
RAPD-PCR	Random amplified polymorphic DNA-PCR
rDNA	ribosomal DNA
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid
RNase A	Ribonuclease A
rpm	round per minute
rRNA	ribosomal RNA
RT-PCR	Real-time PCR
SSCP-PCR	Single-strand conformation polymorphism-PCR
TAE	Tris Acetate EDTA
U/S	Ultrasonography
UV	Ultraviolet
WHO	World Health Organization

List of Abbreviations

	World Health Organization-Informal Working Group on Echinococcosis
+ve	Positive
-ve	Negative

List of Tables

Table	Title	Page
2.1	WHO-IWGE Classification of CE	13
2.2	Sensitivities of various assays for antibody detection in patients with confirmed CE	15
4.1	Accession numbers of reference genotypes retrieved from GenBank for <i>in silico</i> RFLP analysis	84
4.2	Reagents provided with the extraction kit (50 preparations)	85
4.3	PCR Reaction Mix for each sample	93
4.4	HaeIII restriction enzyme kit content	100
4.5	Hinfl restriction enzyme kit content	100
4.6	Components of the reaction mix of <i>Hinfl</i> and <i>HaeIII</i> restrictions enzymes	101
5.1	In silico RFLP patterns after digestion of nad1 gene of E. granulosus species with Hinfl and HaellI restriction enzymes	109
5.2	Demographic and clinical data of human CE patients	114,115
5.3	Results of PCR amplification of the <i>E. granulosus</i> nad1 gene from human, camel and pig HCFs and/or germinal layer samples	118
5.4	Expected and obtained restriction fragment patterns and their corresponding genotype based on <i>in silico</i> combined <i>Hinfl</i> and <i>HaellI</i> PCR-RFLP analysis of <i>E. granulosus</i> nad1 gene	122
5.5	The restriction patterns of nad1 gene of <i>E. granulosus</i> human samples and their corresponding genotype based on <i>in silico</i> PCR-RFLP analysis	126

List of Tables

5.6	The restriction patterns of nad1 gene of <i>E. granulosus</i> camel samples and their corresponding genotype based on <i>in silico</i> PCR-RFLP analysis.	126
5.7	The restriction patterns of nad1 gene from <i>E. granulosus</i> pig samples and their corresponding genotype based on <i>in silico</i> PCR-RFLP analysis	127
5.8	In silico genotypes of human, camel and pig E. granulosus samples based on PCR-RFLP analysis of nad1 gene	131
5.9	Results of sequence analysis of 11 samples representing different <i>in silico</i> RFLP patterns of <i>E. granulosus</i> nad1 gene	134
5.10	Genotypes of the 46 samples under study as determined by <i>in silico</i> PCR- RFLP analysis and sequencing of <i>E. granulosus</i> nad1 gene	135
5.11	Genotypes among the human, camel and pig <i>E. granulosus</i> samples based on <i>in silico</i> PCR-RFLP analysis and sequencing of nad1 gene	135

List of Figures

Figure	Title	Page
2.1	Life cycle of <i>E. granulosus</i>	9
2.2	WHO-IWGE Classification of CE	13
2.3	Algorithm for treatment of CE based on WHO-IWG-2003 international classification of US images	17
2.4	Phylogenetic tree of <i>Echinococcus</i> spp.	28
2.5	Principle of conventional PCR	43
2.6	Nested PCR using two set of primers	44
2.7	Multiplex PCR	45
2.8	qPCR: (A) SYBR Green I assay and (B) TaqMan assay	49
2.9	In silico restriction banding patterns obtained after HaelII and HinfI double digestion of the nad1 gene sequence from Echinococcus spp.	55
2.10	A dideoxynucleotide (ddNTP)	60
2.11	First-generation DNA sequencing technologies	62
2.12	Gel electrophoresis of sanger sequencing	63
2.13	Capillary electrophoresis of automated sanger sequencing	64
4.1	DNA extraction steps	89
4.2	100 bp DNA molecular weight marker	96
4.3	Restriction site of <i>Hinfl</i>	99
4.4	Restriction site of HaeIII	99
4.5	Standard curve graph for calculating RFLP bands size	102

5.1	In silico restriction banding patterns obtained after Hinfl digestion of the nad1 gene sequences from E. granulosus spp. (As constructed by Geneious 10.1.3 software)	110
5.2	In silico restriction banding patterns obtained after HaellI digestion of the nad1 gene sequences from E. granulosus spp. (As constructed by Geneious 10.1.3 software)	110
5.3	Algorithm showing expected restriction fragment patterns (bp) and their corresponding genotype based on <i>in silico</i> PCR-RFLP analysis of <i>E. granulosus spp.</i> nad1 gene	111
5.4	a: Invaginated and evaginated protoscolices stained with iodine from a camel hydatid cyst (100x). b: Evaginated protoscolex stained with iodine from a camel hydatid cyst (400x). c: Unstained invaginated protoscolex from a camel hydatid cyst (400x).	116
5.5	An ethidium bromide-stained agarose gel electrophoresis (2%) showing the PCR product of <i>E. granulosus nad1</i> gene from human (H) samples	119
5.6	An ethidium bromide-stained agarose gel electrophoresis (2%) showing the PCR product of <i>E. granulosus nad1</i> gene from camel (C) samples	120
5.7	An ethidium bromide-stained agarose gel electrophoresis (2%) showing the PCR product of <i>E. granulosus nad1</i> gene from pig (P) samples	121

5.8	Algorithm showing obtained restriction fragment patterns (bp) and their corresponding genotype based on <i>in silico</i> PCR-RFLP analysis of <i>E. granulosus</i> nad1 gene after individual digestion by <i>Hinfl</i> and <i>Haelll</i> enzymes	123
5.9	An ethidium bromide-stained 2% agarose gel showing RFLP patterns of <i>E. granulosus</i> nad1 gene from human samples after digestion with <i>Hinfl</i> (a) and <i>Haelll</i> (b) restriction enzymes	127
5.10	An ethidium bromide-stained 2% agarose gel showing RFLP patterns of <i>E. granulosus</i> nad1 gene from camel samples after digestion with <i>Hinfl</i> (a) and <i>HaeIII</i> (b) restriction enzymes	128
5.11	An ethidium bromide-stained 2% agarose gel showing RFLP patterns of <i>E. granulosus</i> nad1 gene from pig samples after digestion with <i>Hinfl</i> (a) and <i>HaeIII</i> (b) restriction enzymes	129
5.12	Sequence of human sample (H9) showing 2 HaellI (GGCC) restriction sites correspond to G1 genotype	132
5.13	Sequence of camel sample (C23) showing 2 <i>Hinfl</i> (GANTC) and 1 <i>HaeIII</i> (GGCC) restriction sites correspond to G6 genotype	132
5.14	Sequence of pig sample (P3) showing 1 HaeIII (GGCC) restriction site correspond to G5 genotype	133

Abstract

Background: Cystic Echinococcosis (CE), caused by the larval stage of the dog tapeworm *Echinococcus granulosus sensu lato* (*E. granulosus s. l.*), is a widespread neglected zoonotic disease that occurs in many parts of the world. Egypt is considered one of the countries where CE represents a public health concern and so far few studies were done for molecular characterization of the parasite.

Aim of the work: Aim of the present study was to use the PCR-RFLP technique for genotyping of *E. granulosus* isolates targeting the NADH dehydrogenase subunit 1 gene (nad1) and interpretation of results based on *in silico* PCR-RFLP analysis of reference strains retrieved from GenBank.

Subjects and methods: a pilot study was first done where reference strains retrieved from GenBank were analyzed by *in silico* RFLP analysis using two enzymes *Hinfl* and *Haelll*. Virtual graphs and algorithms for interpretation of the results were constructed. Fifty hydatid cyst fluid (HCF) and/or germinal layer samples (19 humans, 23 camels, and 8 pigs) were collected. DNA was extracted and used as a template to amplify the nad1 gene (1069-1078 bp). The amplified PCR products were digested individually with the two restriction endonucleases to generate RFLP patterns. Samples representing the different genotypes inferred from the RFLP patterns as well as those not determined were subjected to automated DNA sequencing based on Sagner's technique.

Results: PCR-RFLP and sequencing showed that, except for two cases (12.5 %) which were typed as G1 among humans and one case as G5 in pigs (12.5 %), *E. canadenesis* G6/7 was the predominant strain among human, camel and pig samples examined.

Conclusion: Camel strain (G6) is the predominant genotype in Egypt. Camels and pigs are crucial in the life cycle of the parasite in Egypt, although other animals may play a role. Control strategies should be implemented to prevent infection of dogs by consuming cysts in tissues of infected animals.

Keywords: Echinococcus granulosus, genotypes, nad1 gene, In silico PCR-RFLP, Sequencing