

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Impact of Different Modalities of Treatment of Hepatorenal Syndrome as Midodrine, Somatostatin analogue, Albumin infusion and Tapping of Ascites on Renal Artery Resistive Index by Doppler ultrasound

Thesis

Submitted in partial fulfillment for Master Degree in in the Internal Medicine

Presented By Kristeen

Ezzat Zaki M.B.B.Ch. Ain

Shams University

Supervisors

Prof. Dr. Maha ElTouny

Professor of Internal Medicine and Gastroenterology Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Hesham Hamdy ElKelany Assistant

professor of Internal Medicine and Gastroenterology Faculty of Medicine – Ain Shams University

Dr. Hossam ElBaz

Lecturer of Internal Medicine and Gastroenterology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2020

ACKNOWLEDGEMENT

First and foremost thanks are due to **ALLAH** the beneficent and merciful of all.

I would like to express my deep gratitude and appreciation to **Prof. Dr. Maha ElTouny,** *Professor of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain Shams. University*, for her continuous help and unlimited support.

I am greatly indebted and grateful to **Ass. Prof. Dr. Hesham Hamdy ElKelany,** Assistant Professor of Internal Medicine and Gastroenterology,

Faculty of Medicine - Ain Shams University, for his continuous encouragement to bring this work to the attempted goal.

I'm also thankful to **Dr. Hossam ElBaz,** *Lecturer of Internal Medicine and Gastroenterology, Faculty of Medicine - Ain Shams University*, for his help and advice.

Kristeen Ezzat Zaki

2019

CONTENTS

Int	roduction
Ai i	m of work
Re	view of Literature
•	ASCITES IN HEPATIC CIRRHOSIS
•	HEPATORENAL SYNDROME
Pa	tients and Methods
Re	sults
Dis	scussion
Su	mmary & Conclusions
Re	ferences
 Ar	abic Summary

LIST OF ABBREVIATIONS

Full-term	ABB.
Acute Tubular Necrosis	ATN
End Diastolic Velocity	EDV
Glomerular Filtration Rate	GFR
Hepatorenal syndrome	HRS
International Ascites Club	IAC
Molecular Adsorbents Recirculation System	MARS
Neutrophil Gelatinase-Associated Lipocalin	NGAL
Peak Systolic Velocity	PSV
Resistive Index	RI
Transjugular Intrahepatic Portosystemic Shunt	TIPS
large-volume paracentesis	LVP

List of Tables

Page	Title	No		
	Review			
15	Comparison of three versions of the International Ascites Club diagnostic criteria of HRS-1	1		
Results				
42	Comparison between the studied groups regarding the clinical data	1		
45	Comparison between the studied groups regarding renal artery RI	2		
47	Comparison between the studied groups regarding urea levels	3		
49	Comparison between the studied groups regarding serum creatinine levels	4		
51	Comparison between the studied groups regarding creatinine clearance	5		
52	Spearman correlation between creatinine clearance and RI	6		
53	Comparison between all parameters in all studied groups	7		

List of Figures

Page	Title	No		
Results				
43	Sex distribution in the studied groups	1		
43	HRS types in the studied groups	2		
44	Causes of liver cell failure in the studied groups	3		
46	Renal artery RI in the studied groups before and after treatment	4		
48	Urea levels in the studied groups before and after treatment	5		
50	Serum creatinine levels before and after treatment in the studied groups	6		
51	Creatinine clearance in the studied groups	7		

Abstract

Background: Liver cirrhosis is a major cause of morbidity and mortality worldwide, mainly due to complications of portal hypertension. Ascites formation in patients with cirrhosis, portal hypertension, or both usually results from hyperdynamic circulatory dysfunction. Aim of the Work: to investigate the effect and prognostic value of treatment of hepatorenal syndrome in patients with liver cirrhosis and massive ascites by LVP, somatostatin analogue and midodrine intake and its effect on renal resistive index. Patients and **Methods:** This study was carried on 40 patients divided into 4 groups where 10 patients (G1) received midodrine therapy and albumin infusion, 10 patients (G2) had tapping of ascites with albumin infusion, 10 patients (G3) received octreotide therapy and albumin infusion and the last 10 patients (G4) received octreotide, midodrine and albumin infusion. All patients were subjected to careful history taking and thorough clinical examination. Before and after intervention, patients had laboratory investigation including complete blood picture, liver function tests, renal function test and ascitic fluid analysis in addition to renal artery Doppler imaging. Results: The study revealed considerable decline in RI in G1 (midodrine group), the change fell short of statistical significance. However, our study showed significant effect of midodrine administration on renal functions as expressed by serum creatinine, blood urea and creatinine clearance. In G3 (octreotide group), the effect of treatment on renal artery RI was minimal. The other group that perceived significant decline in renal artery resistive index was G4 (midodrine and octreotide group). **Conclusions:** LVP and midodrine combination administration resulted in significant decrease in creatinine clearance. Renal artery resistive index has significant correlation with creatinine clearance in studied group and can be used as non-invasive tool.

Key words: different modalities, hepatorenal syndrome, midodrine, somatostatin analogue, albumin infusion, tapping of ascites, renal artery resistive index, Doppler ultrasound

INTRODUCTION

Kidney dysfunction commonly develops in patients with established liver disease. In its most severe form this kidney dysfunction is termed the hepatorenal syndrome, which has been defined as unexplained kidney failure in a patient with liver disease who does not have clinical, laboratory or anatomic evidence of other known causes of kidney failure. The progressive kidney dysfunction that accompanies liver disease is generally considered to be functional in nature because consistent pathologic changes are absent, because the kidney failure can be reversed with timely liver transplantation, and because kidneys in patients with the hepatorenal syndrome can be successful transplanted into patients with normal livers (Williams & Wilkins et al 1988).

Renal hemodynamic changes begin early in the course of liver disease related functional kidney failure; even before changes in serum creatinine concentration are detectable the hallmark change is intense intrarenal vasoconstriction. This vasoconstriction is associated with a reduced renal plasma flow and an elevated renal arterial vascular resistance that may precede clinically recognized kidney dysfunction by weeks or month. Although the precise cause of the renal vasoconstriction remains elusive and is likely multifactorial, a state of elevated renal vascular resistance is present in many nonazotemic patients with liver disease. These patients may be at greater risk for subsequent development of overt hepatorenal syndrome (*Wadei et al.*, 2006).

Ascites is the most common complication in patients with cirrhosis, and is associated with a poor quality of life and poor long-term outcome.

About half of the patients die within six months of first presentation, a third to half of those remaining, die over the next 2 years and the overall five year survival is about 10-20% (*Runyon BA et al.*, 2009).

Large volume paracentesis (LVP) is the most effective and safest treatment than just diuretic therapy for tense ascites. But diuretics should always be given after LVP in order to prevent reaccumulation of ascites, since diuretics would be required to reverse the pathophysiology of sodium retention (*Salerno et al.*, 2007).

Also, large volume paracentesis may cause enough alteration in hemodynamics to precipitate HRS and should be avoided in individuals at risk. The concomitant infusion of albumin can avert the circulatory dysfunction that occurs after large volume paracentesis and may prevent HRS. Conversely, in individuals with very tense ascites, it has been hypothesized that removal of ascetic fluid may improve renal function if it decreases the pressure on the renal veins (*Salerno et al.*, 1987).

Midodrine is an alpha-agonist and octreotide is an analogue of somatostatin, a hormone involved in regulation of blood vessel tone in the gastrointestinal tract. The medications are respectively systemic vasoconstrictors and inhibitors of splanchnic vasodilation, and were not found to be useful when used individually in treatment of hepatorenal syndrome (*Salerno et al.*, 2007).

However, one study of 13 patients with hepatorenal syndrome showed significant improvement in kidney function when the two were used together (with midodrine given orally, octreotide given subcutaneously and both dose according to blood pressure), with three patients surviving to discharge (Angeli et al., 1999). Another nonrandomized, observational study of individuals with HRS treated with subcutaneous octreotide and oral midodrine showed that there was increased survival at 30 days (Esrailian et al., 2007).

AIM OF WORK

The aim of this study is to investigate the effect and prognostic value of treatment of hepatorenal syndrome in patients with liver cirrhosis and massive ascites by (LVP), somatostatin analogue and midodrine intake and its effect on Renal Resistive index.

ASCITES IN HEPATIC CIRRHOSIS

Ascites is defined as the pathologic accumulation of fluid in the peritoneal cavity (*Runyon*, 2009). It is the most common complication of liver cirrhosis. The development of ascites is the final consequence of a series of anatomic, n pathophysiologic, and biochemical abnormalities occurring in patients with cirrhosis.

Ascites in hepatic cirrhosis develops because of a considerable increase of total body sodium and water and portal hypertension which localizes much of that sodium and water in the peritoneal cavity (*Arroyo et al.*, 1988).

Sodium and Water retention:

Retention of sodium by the kidneys is the main reason for this increase though renal water retention does occur in more advanced disease. Renal excretion is the means whereby the body rids itself of excess sodium and normal urinary excretion varies widely in relation to sodium intake, Marked renal sodium retention however, is characteristic of hepatic cirrhosis and ascites; the total daily excretion of sodium in such patients is usually less than 10mmol/24 hours and in severe cases no sodium can be detected in the urine. Water retention occurs primarily as a consequence of sodium retention. Three general theories have been proposed to explain renal retention of sodium in hepatic cirrhosis (*Ring-Larsen and Henriksen*, 1986).

One suggests that portal hypertension causes a loss of fluid into the peritoneum and leads to depletion of the intravascular volume (under