

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

Validation of the Modified Integrative Weaning Index as a Predictor of Weaning from Mechanical Ventilation in Comparison to Conventional Weaning Indices in Adult Critically III Patients.

Thesis submitted for the partial fulfillment of PhD degree in Intensive Care

Medicine

By

Hythem Mohamed Mamdouh Abdelmeguid Barakat

MBBCh, Faculty of Medicine, Ain Shams University
M.Sc. Intensive Care Medicine, Anesthesiology, Intensive Care Medicine &
Pain Management Dept., Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Galal Adel El-Kady

Professor of Anesthesiology, Intensive Care Medicine & Pain Management Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Adel Mohammed El-Ansary

Assistant Professor of Anesthesiology, Intensive Care Medicine & Pain
Management
Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Mohammed Abd El-Salam El-Gendy

Assistant Professor of Anesthesiology, Intensive Care Medicine & Pain
Management
Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2020

All gratefulness is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I can hardly find the words to express my gratitude to Prof. Dr. Galal Adel El-Kady, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like to express my sincere appreciation and gratitude to Assist. Prof. Dr. Adel Mohammed El-Ansary, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his continuous directions and support throughout the whole work.

I would like to express special thanks to Assist. Prof. Dr. Mohammed Abd El-Salam El-Gendy, Assistant Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University for his faithful supervision, precious help and continuous support throughout this work.

Finally, I dedicate this work to my family and friends, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Hythem Barakat

Contents

I	age
List of Abbreviations	i
List of Tables	iii
List of Figures	V
Introduction and Aim of the Work	1
Review of Literature	5
Patients and Methods	45
Results	52
Discussion	72
Summary	82
References	86
Arabic Summary	

List of Abbreviations

A-a DO₂ : Alveolar-arterial gradient of oxygen tension

ABG : Arterial blood gases

A/C : Assist control
ALI : Acute lung injury

APACHE : Acute physiology and chronic health evaluation

ARDS : Acute respiratory distress syndrome

ARF : Acute respiratory failure

BP : Blood pressure
BMI : Body mass index
°C : Degrees Celsius
CI : Confidence interval

cm : Centimeter

CO₂ : Carbon dioxide

COPD : Chronic obstructive pulmonary disease
 CPAP : Continuous positive airway pressure
 Cst,rs : Static compliance of respiratory system

dL : Deciliter

ECG : Electrocardiogram ETT : Endotracheal tube

f : Frequency (respiratory rate) FiO₂ : Fraction of inspired oxygen

g : Grams

GCS : Glasgow coma scale

H₂O : Water Hg : Mercury HR : Heart rate Ht : Height

ICU : Intensive Care Unit

IWI : Integrative weaning index

kg : Kilogram L : Liter min : Minute

mIWI : Modified integrative weaning index

List of Abbreviations (cont.)

mL : Milliliter mm : millimeter

MV : Mechanical Ventilation

No. : Number

NPV : Negative predictive value

O₂ : Oxygen OR : Odds ratio

P0.1 : Tracheal occlusion pressure

PaCO₂ : Partial arterial carbon dioxide pressure

PaO₂ : Partial arterial oxygen pressure PEEP : Positive end expiratory pressure

PEEPi : Intrinsic positive end expiratory pressure (auto-peep)

Pinsp : Peak inspiratory pressure
PIP : Peak inspiratory pressure
PL : Transthoracic pressure
Pmus : Muscle generated pressure

Ppl : Transpleural pressure

Pplat : Plateau pressure

PPV : Positive predictive value

PS : Pressure support
Pz : Pressure at zero flow

Pvent : Proximal airway pressure on mechanical ventilation

Raw : Airway resistance

ROC : Receiver operator curve

RR : Respiratory rate

RSBI : Rapid shallow breathing index SBT : Spontaneous breathing trial

SD : Standard deviation

SIMV : Synchronized intermittent mechanical ventilation SpO₂ : Peripheral capillary oxygen saturation

Temp : Temperature
Vi : Inspiratory flow
Vt : Tidal Volume

Wt : Weight

List of Tables

<u>Table</u>	<u>Title</u>	<u>Page</u>
1	Results from a multi-nation, multi-center study showing	7
	incidence of Mechanical Ventilation of total ICU admissions.	
	(Esteban et al. 2000).	
2	Percentages of causes for need of mechanical ventilation	8
	initiation according to age and mean days of mechanical	
	ventilation (Corbellini et al. 2015)	
3	Prevalence of Ventilator modes used in a multi-centric multi-	17
	nation study (Esteban et al. 2000)	
4	Comparison between incidence and outcomes of 3 categories of	20
	MV weaning (Funk et al. 2010)	
5	Comparison of intubation characteristics and procedural	29
	complication rates between first and last intubations in repeatedly	
	intubated patients (Elmer et al. 2015).	
6	Indication, techniques and complications of first intubation and	30
	reintubation (Menon et al. 2012).	
7	Subject outcomes stratified by requirement for reintubation	31
	(Menon et al. 2012).	
8	Accuracy, likelihood ratio, probability for weaning success when	43
	test is positive and probability for weaning success when test is	
	negative of the indexes used to predict the weaning outcome	
	(Nemer et al. 2009)	
9	Average age of patients enrolled in the study expressed as mean	53
	and SD.	
10	Number of patients according to gender enrolled in the study and	54
	according to outcome.	
11	Mean and standard deviation of weight and height of patients	55
	enrolled in the study.	
12	Hemodynamic monitoring and APACHE II score (heart rate,	56
	temperature, mean arterial pressure) of subjects at time of	
	mechanical ventilation weaning trail.	
13	Causes of mechanical ventilation and percentage of successful	59
	and unsuccessful weaning.	
14	Causes of re-intubation and return to mechanical ventilation	61
15	Endotracheal tube diameter size and tidal volume during the	63
	spontaneous breathing trial.	

16	Respiratory indices and weaning parameters means and p-values	68
17	Predictability and performance of weaning indices and respiratory parameters	69

List of Figures

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1	Drinker & Shaw tank-type ventilator (iron lung) (Kacmarek 2011).	6
2	Pressure/Time and Flow/Time curves demonstrating PEEP, PIP and Pplat (Hess 2014)	10
3	Pressure/Time and Flow/Time curves demonstrating PIP, Intrinsic (auto) PEEP and set PEEP (Hess 2014)	11
4	Pressure curve and phases during one respiratory cycle (Hess et al. 1999)	15
5	Causes of MV Failure and reasons for re- intubation (Kulkarni and Agarwal 2008)	22
6	ABC approach for mechanical ventilation weaning failure (Heunks and van der Hoeven 2010)	23
7	Acute and chronic complications of prolonged mechanical ventilation (Menon et al. 2012).	24
8	Respiratory muscular dysfunction causes and effects (Menon et al. 2012)	27
9	Effect and complications of mechanical ventilation on the cardiovascular system (Menon et al. 2012)	28
10	Performance of different weaning indices (Nemer et al. 2009).	44
11	Bar graph showing average age ±SD of patients in patients successfully weaned and those not successfully weaned	53
12	Bar graph showing the gender distribution according to the outcome	54
13	Percentage of causes of mechanical ventilation	60
14	Percentage of successful/unsuccessful weaning for each cause of mechanical ventilation	60
15	Causes of re-intubation and mechanical ventilation	62

16	The ROC curve (receiver operating	70
	characteristic curve) of different weaning	
	indices.	
17	Bar chart comparing statistical analysis	71
	between different weaning indices	

Introduction

Mechanical ventilation is an essential therapy used in Intensive care units for a variety of reasons with a variety of conditions, for the most, it is an invasive therapy and could result in several complications. On average, approximately 40% of critically ill patients will require mechanical ventilation at some point of their intensive care unit (ICU) stay. These patients will require a weaning protocol to remove them successfully from ventilator support, especially invasive mechanical ventilation. This weaning process, as it differs, could occupy an average 40% of the patient's total ventilation time. The extubation and weaning periods continue to be one of the most challenging aspects for intensive care teams (Wunsch et al. 2013).

Timely recognition of the return to spontaneous ventilation is essential for reducing costs, morbidity, and mortality. Delays in both removing invasive ventilatory support and excessively early removal are correlated with complications that vary according to the severity of the underlying disease. Several weaning indices and predictors were studied in an attempt to evaluate the outcome of removing ventilatory support. However, none of them have yet presented good results in discriminating the outcome of extubation, even those most used in clinical practices (Kollef et al. 1997).

There is no shortage of observational investigations examining the accuracy of weaning predictors. Whether accurate or not, there is no high-level evidence demonstrating that routine application of weaning predictors improves outcome. One possible application would be for the clinician who, despite published evidence to the contrary, remains hesitant to wean in the face of favorable clinical screening criteria (adequate oxygenation, hemodynamic stability, presence of spontaneous inspiratory efforts). Only under these circumstances will weaning predictors have the potential to reduce the duration of mechanical ventilation (Epstein 2009).

Recently, a new index was created, the modified integrative weaning index (IWI) = static compliance of respiratory system x arterial oxygen saturation/frequency/tidal volume (Cst,rs × arterial oxygen saturation/f/Vt ratio). This index evaluates respiratory mechanics, oxygenation, and respiratory pattern in an integrated manner. It demonstrated improved accuracy for weaning failure, and it was superior to all other predictors. The authors suggest that this index could also be used to predict extubation outcome (Nemer et al. 2009).

The threshold used to best discriminate the success or failure of weaning was >25 ml/cm $H_2O/breath/min/L$. However, all studies conducted on this index were carried out on a narrow

patient population variant, and small patient population number, with no correlation to other less considered predictors, thus decreasing reliability of its use on various patient populations and their follow-up (Nemer et al. 2009). Other studies state that the modified IWI is as nonspecific as other indices in predicting weaning success, however is a good predictor for extubation failure (Epstein 2009).