

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

BIOCHMICAL AND PHYSIOLOGICAL RESPONSES OF BROILER CHICKS SUPPLEMENTED WITH SOME AMINO ACIDS AND CREATINE

By

EBTSAM SHAABAN AHMED BAKRY

B.Sc. Agri. Sc. (Agric. Biochemistry), Fac. of Agric., Ain Shams Univ., 2015

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Ain Shams University

Approval Sheet

BIOCHMICAL AND PHYSIOLOGICAL RESPONSES OF BROILER CHICKS SUPPLEMENTED WITH SOME AMINO ACIDS AND CREATINE

By

EBTSAM SHAABAN AHMED BAKRY

B.Sc. Agri. Sc. (Agric. Biochemistry), Fac. of Agric., Ain Shams Univ., 2015

This thesis for M.SC. Degree has been appro	oved by:
Dr. Nadia Yehia Ahmed Attia	•••••
Prof. Emeritus of Biochemistry, Fac. Agric	e., Moshtohor, Benha Univ
Dr. Hany Abdalla Mohamed Serour	
Prof. of Biochemistry, Fac. Agric., Ain sha	nms Univ.
Dr Ibrahim Elwardany Elsayed Hassan	
Prof. Emeritus of Poultry Physiology, Fac.	Agric., Ain Shams Univ.
Dr. Nagah Elshahat Ali El-Sayed	
Prof. Emeritus of Biochemistry, Fac. Agric	c., Ain Shams Univ.

Date of examination: 19 / 2 /2020

BIOCHMICAL AND PHYSIOLOGICAL RESPONSES OF BROILER CHICKS SUPPLEMENTED WITH SOME AMINO ACIDS AND CREATINE

By

EBTSAM SHAABAN AHMED BAKRY

B.Sc. Agri. Sc. (Agric. Biochemistry), Fac. of Agric., Ain Shams Univ., 2015

Under the supervision of:

Dr. Samir El-Hady Mohamed Hassan

Prof. of Biochemistry, Department of Agriculture Biochemistry, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Nagah El-Shahat Ali El-Sayed

Prof. of Biochemistry, Department of Agriculture Biochemistry, Faculty of Agriculture, Ain Shams University

Dr. Ibrahim El-Wardany El-Sayed Hassan

Prof. of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University

ABSTRACT

Ebtsam Shaaban Ahmed Bakry: Biochemical and Physiological Responses of Broiler Chicks Supplemented with some Amino Acids and Creatine, Department of Biochemistry, Faculty of Agriculture, Ain Shams University, 2020.

The main objective of this study was to evaluate the ability of amino acids (AA) and Creatine supplementation (either singly or in combination) to drinking water to overcome the negative responses of feeding broiler chicks on low protein diet (1990). The blood parameters, histological and immunological traits along with growth performance from hatching to marketing age. A total of 120 one day old were determined old, unsexed broiler chicks were obtained from a local hatchery. The chicks were divided into six treatment groups and subjected to different treatment for four weeks from the second week until the fifth week as follows: 1st group was kept as a control group, while the 2nd and 3rd groups were supplemented respectively (via drinking water) with 0.5 g and 1.0 g amino acid /L of drinking water. The 4th and 5th groups were supplemented with 0.5 g and 1.0 g Creatine /L of drinking water, respectively. The 6th group was supplemented with 0.5 g of AA and 0.5 g of Creatine/L. Broilers of control group were fed on another commercial diet containing 23% of protein and 3100 Kcal/ kg as recommended by NRC (1994), while other groups of chicks were fed on a diet obtaining 19% protein and 2900 kcal/Kg. The duration of the experiment was five weeks. The productive and biochemical responses were evaluate through measurement of were: live body weight, weight gain, blood plasma protein fractions, plasma lipids (cholesterol, triglycerides, high density lipoprotein (HDL) and low density lipoprotein (LDL). Transaminases (ALT and AST) activity indicative of liver function was measured. Kidney function test in terms of plasma creatinine, urea nitrogen and uric acid were also determined. Results showed that live body weight and weight gain of broiler chickens were significantly increased by AA

administration either at three or five weeks of age. At marketing age (5 weeks), birds from the 3rd and 2nd groups achieved heavier body weigh by 32.3 and 26.8% respectively more than the control chickens. Blood plasma total protein, albumin and globulin levels were significantly increased in the AA treatment groups for T3 and T2, respectively as compared to the control chicks. Addition of AA resulted in an obvious increase in the activity of ALT and AST indicative of negative influence of excess AA on liver function-related enzymes, especially with the higher dose of AA (T3). This was also observed for plasma uric acids and creatinine concentrations as end products of protein metabolism. The histological sections from lymphoid organs revealed better histological appearance indicative of better immunity and bird's health. It is concluded that excessive AA administration for broilers fed on low protein diet, could be used to increase live body weight, enhance protein metabolism without negative impacts on blood biochemistry, and improve their immune response. However, further study is needed to assess the cost and the net revenue from AA and Creatine supplementation.

Key words: Amino acids. Creatine, blood biochemical parameters, growth performance, broiler chickens

ACNOWLEDGEMEN

In the name of **Allah**, most gracious, most merciful. All praise and glory to Allah the almighty who alone made this small object to be accomplished.

I would like to express my profound gratitude and sincere appreciation to **Dr. Samir El-Hady Mohamed Hassan** Prof. Emeritus of Biochemistry, Department of Agriculture Biochemistry, Faculty of Agriculture, Ain Shams University, for his generous supervision, valuable guidance his kind encouragements for me during the present investigation.

Sincere thanks and deepest gratitude to **Dr. Nagah El-Shahat Ali El-Sayed** Prof. Emeritus of Biochemistry, Department of Agriculture Biochemistry, Faculty of Agriculture, Ain Shams University, for his valuable supervision, guidance, keen interest, time, effort and every possible help he kindly offered during the whole period of this investigation and writing this manuscript.

Gratefulness and thanks to express my deep gratitude and sincere appreciation to **Dr. Ibrahim El-Wardany El-Sayed Hassan** Prof. Emeritus of Poultry Physiology, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his supervision, guidance, continuous support during the course of this investigation and help during every steps of thesis.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
LIST OF ABBREVATIONS	VI
1. INTRODUCTION	1
2. REVIWE OF LITERATURE	3
2.1. Effect of amino acids on physiological and biochemical	3
responses of broiler chickns	
2.2. Effect of creatine on physiological and biochemical responses	35
of broiler chickns	
3.MATERIAL AND METHODS	40
3.1.1 Experimental animal	40
3.1.2 Amino Acids	40
3.1.3 Creatine	41
3. 2. Experimental design	41
3.3. Blood samples	42
3.4. Determination of Growth performance	42
3.5. Determination of Biochemical blood parameter	42
3.5.1. Total protein	42
3.5.2. Albumin	42
3.5.3.1. Aspartate aminotransferase (AST)	43
3.5.3.2.Alanine aminotransferase (ALT)	45
3.5.4.1.Uric acid	47
3.5.4.2.Creatinine	49
3.5.4.3.Urea	50
3.5.5.1.Triglycerides	51
3.5.5.2.Cholesterol	53
3.5.5.3. HDL- cholesterol	54
3.5.5.4. LDL- cholesterol	55
3.5.6. Determination of some blood hormones	56

3.5.7. Lipid peroxidation	56
3.5.8.1. Total antioxidant capacity (TAC)	56
3.5.8.2. Superoxide dismutase (SOD) activity	56
3.5.9. Immunoglobulin	56
3.5.10.1. Red blood cells (RBCs) count.	57
3.5.10.2. Hemoglobin (Hb)	57
3.5.10.3. Hematocrit (Ht)	57
3.5.10.4. Mean corpuscular volume (MCV)	57
3.5.10.5. Mean corpuscular hemoglobin (MCH)	57
3.5.10.6. Mean corpuscular hemoglobin concentration (MCHC)	58
3.6.Histological examination	58
3.7.Statistical analysis	58
4. RESULTS AND DISCUSSION	59
4.1 Live Body Weight	59
4.2 Body Weight Gain (g)	62
4.3 Plasma Total Protein (g)	65
4.4 Lipid Profile	67
4.5 Liver And Kidney Function Indicators	69
4.6 Antioxidant Indicators	71
4.7 Immunity Indicators	72
4.8 Metabolic Hormone Indicators	74
4.9 Hematological traits	75
4.10 Histological observation	77
5. SUMMARY	90
6. REFERENCES	86
ARABIC SUMMARY	

Ш

LIST OF TABLES

Table No.		Page
1	Amino acid composition of the commercial mixture	40
	of amino acids (AMINO PREMIUM 2500)	
	Effect of Amino acid and Creatine supplementation	
2	to drinking water on live body weight(g) of broiler	59
	chickens at different age	
	Effect of amino acids and Creatine supplementation	
3	to drinking water on body weight gain (g) of broiler	62
	chickens at different ages	
	Effect of Amino acid and Creatine supplementation	
4	to drinking water on plasma total protein of broiler	65
	chicks.	
5	Effect of Amino acid and Creatine supplementation	67
	to drinking water on lipid profile of broiler chicks.	
	Effect of Amino acid and Creatine supplementation	
6	to drinking water on of liver and kidney function	69
	indicators of broiler chicks.	
	Effect of Amino acid and Creatine supplementation	
7	to drinking water on Antioxidant indicators of	71
	broiler chicks.	
	Effect of Amino acid (AA) and Creatine	
8	supplementation to drinking water on Immunity	72
	indicators of broiler chicks	
	Effect of Amino acid and Creatine supplementation	
9	to drinking water on metabolic hormone indicators	74
	of broiler chicks.	
10	Hematological traits	75

LIST OF FIGURES

Fig. No.		Page
1	T.S in the kidney from T1 treatment (H & E x 100).	77
2	T.S in the kidney from T2 treatment (H & E x 100).	78
3	T.S in the kidney from T3 treatment (H & E x 100).	78
4	T.S in the kidney from T4 treatment (H & E x 100)	79
5	T.S in the kidney from T5 treatment (H & E x 400).	79
6	T.S in the kidney from T6 treatment (H & E x 400).	80
7	T.S in the liver from T1 treatment (H & E x 100).	80
8	T.S in the liver from T2 treatment (H & E x 400).	81
9	T.S in the liver from T3 treatment (H & E x 400).	81
10	T.S in the liver from T4 treatment (H & E x 400)	82
11	T.S in the liver from T5 treatment (H & E x 100).	82
12	T.S in the liver from T6 treatment (H & E x 400).	83
13	T.S through bursa of Fabricius from chicks of the	83
	T1 treatment (H & E x 100).	
14	T.S through bursa of Fabricius from chicks of the	84
	T2 treatment (H & E x 10).	
15	T.S through bursa of Fabricius from chicks of the	84
	T3 treatment (H & E x 100).	
16	T.S through bursa of Fabricius from chicks of the	85
	T4 treatment (H & E x 100).	
17	T.S through bursa of Fabricius from chicks of the	85
	T5 treatment (H & E x 100).	
18	T.S through bursa of Fabricius from chicks of the	86
	T6 treatment (H & E x 100).	
19	T.S through thymus gland from chicks of the T1	86
	treatment (H & E x 100).	
20	T.S through thymus gland from chicks of the T2	87
	treatment (H & E x 100).	
21	T.S through thymus gland from chicks of the T3	87

	treatment (H & E x 100).	
22	T.S through thymus gland from chicks of the T4	88
	treatment (H & E x 10).	
23	T.S through thymus gland from chicks of the T5	88
	treatment (H & E x 100).	
24	T.S through thymus gland from chicks of the T6	89
	treatment (H & E x 100).	

LIST OF ABBERVIATIONS

AA : Amino Acids

ALT : Alanine aminotransferase AST : Aspartate aminotransferase,

BNU : Urea

BWG : Body weight gain

CHOL : Cholesterol

CMH : Creatine monohydrate

CRE : Creatinine

EDTA :Ethylenediamineteraacetic acid

Fig. : Figure

Hb : Hemoglobin

HDL : High density lipoprotein,

Ht : Hematocrit

IgA : Immunoglobulin A

IGF-1 : Insulin growth factor -1

IgG : Immunoglobulin G IgM : Immunoglobulin M

LBW : live body weight

LDL : Low density lipoprotein

MCH : Mean corpuscular hemoglobin

MCHC : Mean corpuscular hemoglobin concentration

MCV : Mean corpuscular volume

MDA : Malondialdehyde

Min. : Minute

NS : Non-significant

RBCs : Red blood cells count

SAS : Statistical analysis system

SE : Standard error

SOD : Superoxide dismutase

ST : Standard