

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Phytochemical and Biological Studies on Certain Plants Belonging to Family Fabaceae

A Thesis Submitted

In Partial Fulfilment of the Requirements

for the Degree of Philosophy in Pharmaceutical Sciences

(Pharmacognosy)

By

Mahmoud Aly Mansour Aly

B. Pharm. Sci., 2008 M. Pharm. Sci., 2014 Faculty of Pharmacy, Ain Shams University

Under the Supervision of

Prof. Dr. Abdel-Nasser Badawy Singab

Professor of Pharmacognosy
Vice President of Ain Shams University for Postgraduate affairs
Chairman of the Center for Drug Discovery, Research and Development
Faculty of Pharmacy- Ain Shams University

Prof. Dr. Mohamed Roshdi Dawood Elgindi

Professor of Pharmacognosy Faculty of Pharmacy, Helwan University

Dr. Mohamed Mahmoud El-Shazly

Dr. Eman Mohamed Kamal

Associate Professor of Pharmacognosy Faculty of Pharmacy, Ain Shams University

Associate Professor of Pharmacognosy Faculty of Pharmacy, Ain Shams

Department of Pharmacognosy
Faculty of Pharmacy
Ain Shams University
Abbasia, Cairo, Egypt
2020

Abstract

Phytochemical and Biological Studies on Certain Plants Belonging to Family Fabaceae

The gastroprotective activity of the dichloromethane soluble fraction of *Adenanthera pavonina* leaves methanol extract (APD) was investigated against ethanol-induced gastric ulceration in rats. APD markedly increased the mucin content, PGE2 production compared with the ulcer control group. APD (50 and 100 mg/kg) pretreatment markedly increased GSH and catalase levels when compared with the ulcer group. Furthermore, APD significantly decreased the elevated MDA tissue levels, which was induced by ethanol administration. The results demonstrated that APD exhibited potent anti-inflammatory activity as the level of TNF-α returned to its normal value in the group pretreated with 100 mg/kg of APD and this effect was higher than omeprazol. The gastoprotective activity was further confirmed by markedly reduction of NFκB, COX-2 and iNOS immunoexpression in groups pretreated with APD.

Phytochemical investigation of dichloromethane fraction of *Adenanthera pavonina* leaf resulted in isolation of coumesterol dimethyl ether (1), formononetin (2), biochanin A (3), genistein (4), kaempferol (5), apigenin (6) and daidzein (7). Our results suggested that the dichloromethane soluble fraction of *Adenanthera pavonina* leaves methanol extract could be developed as a gastroprotective dietary supplement or functional food due to different isoflavone compounds.

GC–MS analysis revealed the presence of 21 components representing 97.9% of the oil content of *A. pavonina* leaves and 14 components representing 98.7% of the oil content of fruits. This result summarized the chemical profiles of *A. pavonina* leaves and fruits essential oils growing in Egypt for the first time. The leaves essential oils of *A. pavonina* demonstrated different composition compared with the oils from the fruits.

ACKNOWLEDGEMENT

First of all, I would like to extend due praise and thanks to ALLAH, the source of all knowledge, and may His peace and blessings be upon all his prophets; for granting me the chance and the ability to successfully complete this study.

I would like to express my deepest gratitude, sincere and profound appreciation to many people who helped me in this work, it is a pleasant aspect that I have now the opportunity to express my gratitude for all of them.

I would like to express my profoundest gratitude to my thesis advisors; Professor Abdel-Nasser B. Singab, Professor of Pharmacognosy, Vice President of Ain Shams University for Postgraduate Studies, I am extremely grateful and indebted to him for his expert and valuable guidance. Thanks for his precious time, for his continuous support, for his motivation, valuable advices and useful tips. Thanks for his sincere comments, constructive suggestion and correction to the thesis. His enthusiasm, encouragement, support and faith in me throughout have been extremely helpful.

I am also very grateful to Prof. Dr. Mohamed Roshdi Elgindi, Professor of Pharmacognosy, Faculty of Pharmacy, Helwan University, who showed me the road and helped to get me started on the path of this degree. Thanks for his kind supervision, indispensible advice and valuable comments.

I am also very grateful to Dr. Mohamed Mahmoud El-Shazly, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University. Thanks for his valuable scientific guidance, direct supervision and great efforts throughout the work.

I am also very grateful to Dr. Eman Mohamed Kamal, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, who helped to get me started on the path of this degree. Thanks for the time we spent in the lab, for listening to the little problems and roadblocks that unavoidably crop up in the course of performing research, for her sincere guidance, brilliant ideas and advice that helped me in all the time of research and writing of this thesis.

I would like to express my sincere gratitude to members of Pharmacognosy Department; my Professors and Doctors, thanks for their continuous support, education and useful tips. My colleagues and friends, thanks for their support and encouragement all the time. Thank you my department for providing a very warm environment and being my family in University.

I would like also to thank my childhood and college friends, Thanks for your support, encouragement, continuous care and for standing beside me all the time.

Finally, to my beloved family; my dearest great parents and grandmothers, I would like you to know that you are all my inspiration and motivation for everything, thank you for supporting me and allowing me to follow my ambitions throughout my childhood, thank you for letting me the person I am today, without your endless support, enduring love, motivation and encouragement, I couldn't have made it so far. I am really thankful to my wife Alaa for her support, encouragement and continuous care. I would like to share this moment of happiness with them.

Mahmoud mansour

Cairo, 2020

CONTENTS

Co	ontents
	st of Tables
	st of Figures.
	st of Abbreviations
,	
Int	troduction
Re	eview of Literature
	I. Phytochemical constituents of genera of tribe Mimoseae of subfamily
	Mimosoideae
I	II. Biological activity of genera of tribe Mimoseae of subfamily Mimosoideae
II	II. Folk medicinal uses of the genus Adnenthera
Ta	axonomy
Ma	aterials, Apparatus, and Methods
1.	Materials
	1.1. Plant material
	1.2. Materials for the phytochemical investigation of Adnenthera pavonina leave
	(Fabaceae)
2.	Apparatus
	2.1. General apparatus.
	2.2. Chromatographic apparatus.
	2.3. Spectroscopy apparatus.
3.	Methods
	3.1. Methods for the phytochemical investigation of A. pavonina leave
	(Fabaceae)
	3.2. Methods for the biological investigation of A. pavonina leave
	(Fabaceae)

Pa	rt I: Biological investigation of Adnenthera pavonina leaves (Fabaceae)
	1. In vitro biological activity
	1.1. In vitro cytotoxic activity.
	1.2. In vitro anti-inflammatory activity
	1.3. <i>In vitro</i> anti-diabetic activity
	2. In vivo gastroprotective activity
	2.1. In vivo gastroprotective pilot study of A. pavonina leaves fractions
	2.2. In vivo gastroprotective activity of the dichloromethane soluble fraction of
	A. pavonina leaves methanol extract (APD)
Par	t II: Phytochemical investigation on A. pavonina leaves (Fabaceae)
1.	Phytochemical screening of A. pavonina leaves
2.	Solvent fractionation of A. pavonina leaves and preliminary chromatographic
	studies
3.	Chemical investigation of the dichloromethane soluble fraction of A. pvonina
	leaves methanol extract.
	3.1 . HPLC-ESI/MS/MS profiling of the dichloromethane soluble fraction of <i>A</i> .
	pvonina leaves methanol extract (APD)
	3.2 . Isolation, purification and structural elucidation of the major compounds
	of the dichloromethane soluble fraction of A. pvonina leaves methanol extract
	3.2.1. Fraction APD-III
	Isolation of compound 1 [Coumestrol dimethyl ether]
	Identification of compound 1[Coumestrol dimethyl ether]
	3.2.2. Fraction APD-V
	Isolation of compound 2 [Formononetin]
	Identification of compound 2 [Formononetin]
	Isolation of compound 3 [Biochanin A]
	Identification of compound 3 [Biochanin A]
	3.3. Fraction APD-VI
	Isolation of compound 4 [Genistein]
	Identification of compound 4 [Genistein]
	Isolation of compound 5 [Kaempferol]
	Identification of compound 5 [Kaempferol]

Pε	age
3.4. Fraction APD-VII.	121
Isolation of compound 6 [Apigenin]	121
Identification of compound 6 [Apigenin]	121
Isolation of compound 7 [Daidzein]	124
Identification of compound 7 [Daidzein]	124
4. GC/MS profiling of the chemical constituents of the essential oils obtained from	
A. pavonina leaves and fruits	127
General Summary	135
Conclusion and Recommendations	139
References	141
Arabic Summary	

LIST OF TABLES

Tal	ble		
1.	Flavonoids isolated from species of tribe Mimoseae		
2.	Phenolic acids & phenolic acid glycosides isolated from species of tribe Mimoseae		
3.	Triterpenes and sterols isolated from species of tribe Mimoseae		
4.	Saponins isolated from species of tribe Mimoseae		
5.	Fatty acid esters isolated from species of tribe Mimoseae		
6.	Alkaloids isolated from species of tribe Mimoseae.		
7.	Miscellaneous compounds isolated from species of tribe Mimoseae		
8.	Folk medicinal uses of some species tribe Mimoseae.		
9.	Results of the anti-inflammatory activity (IC $_{50}$) of fractions of A. pavonina leaves		
10.	Results of the anti-diabetic activity (IC ₅₀) of fractions of A. pavonina leaves		
11.	Results of the phytochemical screening of A. pavonina leaves		
12.	HPLC-ESI/MS/MS identification of the major constituents of the dichloromethane		
	soluble fraction of A. pvonina leaves methanol extract (APD)		
13.	Results of the column fractionation of APD fraction		
14.	Physical and chromatographic properties of compound (1)		
15.	Spectral data of compound (1)		
16.	Physical and chromatographic properties of compound (2)		
17.	Spectral data of compound (2)		
18.	Physical and chromatographic properties of compound (3)		
19.	Spectral data of compound (3)		
20.	Physical and chromatographic properties of compound (4)		
21.	Spectral data of compound (4)		
22.	Physical and chromatographic properties of compound (5)		
23.	Spectral data of compound (5)		
24.	Physical and chromatographic properties of compound (6)		
25.	Spectral data of compound (6)		
26.	Physical and chromatographic properties of compound (7)		
27.	Spectral data of compound (6)		
28.	GC-MS analysis of essential oil of <i>A. pavonina</i> leaves and fruits		

LIST OF FIGURES

Figu	ure F	Pag	
1.	Photos of A. pavonina: (a) tree (\times 0.006), (b) Leaves (\times 0.2)	5	
2.	Photos of A. pavonina: (a) fruits, (b) infloresence		
3.	Anti-diabetic activity of the total extracts and fractions of A. pavonina leaves (%		
	inhibition of α -amylase against concentration in $\mu g/ml$)	7	
4.	Macroscopic gross evaluation of stomach tissues in pilot study	7	
5.	Macroscopic gross evaluation of the rats stomach in different groups	7	
6.	Effect of APD on ulcerated area, titratble acidity and mucin content	7	
7.	Effect of APD on MDA, GSH and catalase in ethanol-induced gastric ulcer in		
	rats	7	
8.	Effect of APD on TNF- α in ethanol-induced gastric ulcer in rats	7	
9.	Effect of APD on PGE2 in ethanol-induced gastric ulcer in rats	7	
10.	Effect of APD (25, 50, 100 mg/kg) on ethanol-induced gastric histological		
	alterations	8	
11.	Effect of APD on the intensity of alcian blue mucopolysaccharide reaction in		
	ethanol-treated rats	8	
12.	Expression of NF-κB in gastric mucosa by immunohistochemical staining (×40).	8	
13.	Expression of COX-2 in gastric mucosa by immunohistochemical staining (×40.	8	
14.	Expression of iNOS in gastric mucosa by immunohistochemical staining (×40).	8	
15.	Expression of HSP-70 in gastric mucosa by immunohistochemical staining (×40)	8	
16.	Chemical structures of tentatively identified constituents by HPLC-ESI/MS/MS	ç	
17.	Scheme of the extraction, purification and isolation of A. pvonina leaves		
	components	Ģ	
18.	Structure of compound 1	10	
19.	¹ H-NMR of compound 1	10	
20.	¹³ C APT-NMR of compound 1	10	
21.	Structure of compound 2.	10	
22.	¹ H-NMR of compound 2.	10	
23.	¹³ C -NMR of compound 2.	10	
24.	Structure of compound 3	1(
25.	¹ H-NMR of compound 3	11	
26.	¹³ C APT-NMR of compound 3	11	

Figu	ure	Page
27.	Structure of compound 4.	114
28.	¹ H-NMR of compound 4.	116
29.	¹³ C APT-NMR of compound 4.	117
30.	Structure of compound 5	118
31.	¹ H-NMR of compound 5.	120
32.	Structure of compound 6.	122
33.	¹ H-NMR of compound 6.	123
34.	Structure of compound 7	125
35.	¹ H-NMR of compound 7	126
36.	Chromatogram of Adenanthera pavonina leaves oil	130
37.	Chromatogram of Adenanthera pavonina fruits oil	131
38.	Chemical structures of identified components of essential oil by GC/MS	132

LIST OF ABBREVIATIONS

α	alpha
δ value	chemical shift (ppm)
μg	microgram
μM	micromole
ANOVA	analysis of variance
A DD	Butanol soluble fraction of Adenanthera pavonina leaves
APB	methanol extract.
ADD	Dichloromethane soluble fraction of Adenanthera pavonina
APD	leaves methanol extract
A DIT	Hexane soluble fraction of Adenanthera pavonina leaves
APH	methanol extract
APLT	Adenanthera pavonina leaves total methanol extract
APT	Attached proton test
ATCC	American Type Culture Collection
bw	body weight
CC	column chromatography
CD ₃ OD	deuterated methanol- d_4
CH ₂ Cl ₂	dichloromethane
CHCl ₃	chloroform
cm	centimeter
CNS	central nervous system
COX-2	cyclooxygenase enzyme -2
d	doublet
DCM	dichloromethane
Dil	dilute
DMSO-d ₆	deuterated dimethylsulfoxide-d ₆
DPPH	2,2-diphenyl-1-picrylhydrazyl radical
ELISA	enzyme linked immunosorbent assay
ESI	electrospray ionization
EtOAc	ethyl acetate
EtOH	ethanol
g	Gram
GSH	glutathione
h	hour
HCT116	human colorectal carcinoma cell lines
HEPES	N-2-hydroxyethylpiperazine-N-2'-ethanesulfonic acid
HNE	Human neutrophil elastase
HPLC	high performance liquid chromatography
HSP	heat shock protein
Hz	Hertz

i.p	intraperitoneal
IC ₅₀	inhibitory concentration by 50%
ID	internal diameter
INF	interferon
iNOS	inducible nitric oxide synthase
J value	coupling constant
kg	kilogram
1	liter
LPS	lipopolysaccharide
m	meter
m/z	mass to charge ratio
MDA	malondialdehyde
MeOH	methanol
mg	milligram
MHz	mega Hertz
MIC	minimum inhibitory concentration
min	minute
ml	milliliter
mM	millimole
mm	millimeter
MS	mass spectrometry
MTT	microculture tetrazolium assay
NF-κB	nuclear factor kappa B
nm	nanometer
NMR	nuclear magnetic resonance
NO	nitric oxide
PC	paper chromatography
PDA	photodiode array
Pet. ether	petroleum ether
PGE ₂	prostaglandin E ₂
PNPG5	P-Nitrophenyl-α-D-maltopentaoside
ppm	part per million
ROS	reactive oxygen species
rpm	rotation per minute
S	singlet
TLC	thin layer chromatography
TMS	tetramethylsilane
TNF-α	tumor necrosis factor alpha
t _R	retention time
UV	ultraviolet
VLC	vacuum liquid chromatography