

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University
Faculty of Women for Arts, Science and Education
Biochemistry and Nutrition Department

Impact of dry orange (Citrus sinensis) peels powder on Bisphenol A induced-hepatic and splenic toxicity in rats

Thesis

Submitted for Faculty of Women for Arts, Science and Education, Ain Shams University. In partial fulfillment for the Master Science Degree in Biochemistry and Nutrition.

By: Hager Mosaad Saad Abd-Elgwaad

Demonstrator in the department of Biochemistry and Nutrition Faculty of Women, Ain Shams University

Under Supervision of:

Prof.Dr. Hanan Mohamed Fathy Abd El-Wahab

Prof. of Biochemistry and Nutrition Department of Biochemistry and Nutrition Faculty of Women, Ain Shams University

Dr. Enas Ali Kamel

Assistant Professor of Nutrition Department of Biochemistry and Nutrition Faculty of Women, Ain Shams University

Dr. Eman Hassan Abdel Aziz

Lecturer of Biochemistry and Nutrition Department of Biochemistry and Nutrition Faculty of Women, Ain Shams University

a Tilistilaila in

حدق الله العظيم سورة كه آية (114)

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to thank my supervisor with deepest gratitude and sincere appreciation goes to **Prof. Dr. Hanan Mohamed Fathy Abd El-Wahab** Professor of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, not only for suggesting, planning the point of research and valuble supervision, but also for her great help, guidance and appropriate choice of the research topic. She has been a tremendous mentor for me.

Let me express my deepest appreciation for **Dr. Enas Ali Kamel**, Assistant Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for her great efforts, precious comments, patience and constant encouragement during all steps of this work.

I would like to express my profound thanks and gratitude to **Dr. Eman Hassan**Abdel Aziz, lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition

Department, Faculty of Women for Arts, Science and Education, Ain Shams University,

for her helping, supporting, encouraging, and her sincere advice during all steps of this

work.

I am thankful to **Dr. Amany Abdel Hamed Mahmoud**, Assistant Professor Histology and Histochemestry, Zotology Department, Faculty of Women for Arts, Science and Education, Ain Shams University for the help that she offered in the histopathological examination carried out in this study.

With great pleasure, I would like to express my sincere gratitude to the staff members of Biochemistry and Nutrition Department, Women's college Ain Shams University, for their encouragement to carry out this work. Also I'd like to express my thanks with love to my friends for their help and support throughout this work.

Hager Mosaad Saad Abd-Elgwaad
2020

DEDICATION....

This work is dedicated for the soul of my father, Allah bless his soul.

I'd like to express my love to all my family specially; my mother, my sister and my brother for their encouragement, support, patience and endless love when I was hardly need of this. I owe for them a lot.

List of contents

Subject	Page No.
List of abbreviations	i
List of tables	vii
List of figures	viii
Abstract	xi
Introduction	1
Aim of the work	3
Review of literature:	
- Bisphenol A (BPA)	5
- Uses of BPA in manufacture	5
- Sources and routes of BPA environmental	6
exposure	
1.Food and drinking water	6
2. Effluents	10
3.Soil	11
4.Dust	12
5.Atmosphere	12
- Occupational exposure	14
- Bisphenol A in Egypt	15
- Bisphenol A metabolism in human and animal bodies	17
 Toxic effect of BPA and related diseases 	22
1.Endocrine disruption	23
2. Obesity, diabetes, and heart diseases	24
3. Neurotoxicity	26
4. Mutagenicity, carcinogenicity and teratogenicity	28
5.Hepatotoxicity	30
5.1.Non-alcoholic fatty liver disease (NAFLD)	31
induced by the action of BPA on Sterol regulatory	
element-binding transcription factor 1 (SREBF1)	
gene expression	
6. Immunotoxicity:	32
6.1. The effect of BPA on spleen	33
6.2. The effect of BPA on interleukin-4 (IL-4) and	34

	Immunoglobulins	
-	Citrus fruits	36
-	Orange (Citrus sinensis)	37
-	Active component in citrus sinensis peels	37
-	The ameliorative effects of <i>citrus sinensis</i> peels	38
	1.Anti-oxidant effect	38
	2. Cytotoxic and anticancer effects	41
	3.Anti-hyperglycemic effect	41
	4. Hypolipidemic and cardio-protective effects	42
	5.Hepato and Immuno-protective effects	46
Mate	rials and Methods:	
Mate	rials:	
-	Plant material	49
-	Chemicals	49
-	Animals	49
-	Diet	49
Meth	ods:	
-	Preparation of orange peels powder	52
-	Proximate analysis: Determination of moisture	52
	content	
-	Determination of Protein (g/100g dried weight)	53
-	Determination of ash content	54
-	Determination of fat content (g/100g dried weight)	55
-	Determination of crude fiber	55
-	Determination of total Carbohydrates (g/100g	56
	dried weight)	
-	Extraction of phenolic and flavonoid contents in	56
	orange peels powder:	
	1. Determination of total phenolic content	56
	2. Determination of total flavonoids content	57
-	Experimental design	57
-	Samples collection	59
-	Biological measurements	60
	1.Food intake	60
	2.Change in body weight	60
	3.Feed efficiency ratio (FER)	60

4.Relative weight of liver and spleen	60
- Biochemical analyses:	
- Liver analyses:	
1. RT-qPCR for <i>SREBF1</i> gene expression	61
2. Determination of Liver Catalase (CAT)	68
enzyme activity	
- Serum analyses:	
1. Determination of serum nitric oxide (NO) level	70
2. Interleuken-4 (IL-4)	71
3. Determination of aspartate aminotransferase	77
(AST) enzyme activity	
4. Determination of alanine aminotransferase	79
(ALT) enzyme activity	
5. Determination of lipids profile	81
a. Determination of total cholesterol (TC)	81
b. Determination of serum high density	83
lipoprotein cholesterol (HDL-C)	
c. Determination of serum triacylglycerols	84
(TAGs)	
d. Determination of serum very low density	86
lipoprotein cholesterol (VLDL-C)	
concentration	
e. Determination of serum low density	87
lipoprotein cholesterol (LDL-C	
concentration	
f. Risk factor ₁	87
6. Determination of serum Immunoglobulin-E	87
(IgE)	
7. Determination of serum Immunoglobulin-M	90
(IgM)	
8. Determination of Serum Iron	92
9. Determination of Serum Total Iron Binding	93
Capacity (TIBC)	0.4
- Hematological measurements	94
- Histopathological Examination	94
- Statistical analysis	95

Resu	1 4a•	
Kesu		06
_	Proximate analysis of orange (<i>Citrus sinensis</i>) peels powder (OPP)	96
-	Antioxidant activity of orange (Citrus sinensis) peels powder (OPP) ethanolic extract	97
	± • •	98
_	The effect of OPP supplementation against BPA administration on some biological parameters in	98
	different experimental groups	
-	The effect of OPP supplementation against BPA administration on liver Sterol regulatory element-binding transcription factor1 (<i>SREBF1</i>) gene	103
	expression, serum interluken-4 (IL-4) (Pg/ml), serum immunoglobulins M (IgM) and E (IgE)	
	(mg/dl) levels in different experimental groups	
_	The effect of OPP supplementation against BPA	108
	administration on serum nitric oxide level (NO)	
	(µmol/L), alanine aminotransferase (ALT) (U/L),	
	aspartate aminotransferase (AST) enzyme	
	activities (U/L) and hepatic catalase enzyme	
	activity (U/g. tissue) in different experimental	
	groups	
-	The effect of OPP supplementation against BPA	113
	administration on serum lipids profile in different	
	experimental groups	110
-	The effect of OPP supplementation against BPA administration on serum Iron (µg/dl) and TIBC	119
	(μg/dl) in different experimental groups	
-	The effect of OPP supplementation against BPA	121
	administration on hemoglobin (Hb) concentration	
	(g/dl), red blood cells (RBCs) (x10 ⁶ cell/ μ l) and	
	total leucocyte counts (TLC) (x10 ³ cell/µl) in	
	different experimental groups The effects of OPP supplementation against PPA	125
-	The effects of OPP supplementation against BPA administration on the microscopic examinations of	125
	liver tissues in all experimental rat groups	
	irver assues in an experimental fat groups	
<u> </u>		