

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكرونيله

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

HANAA ALY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

HANAA ALY

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

Management of Contaminants Spills in Watercourses

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

In

Civil Engineering
Irrigation and Hydraulics Department

Submitted by

Dalia Hassan Mohamed Shehata

B. Sc. in Civil Engineering M. Sc. in Civil Engineering (Irrigation and Hydraulics), 2014 Assistant Researcher, Strategic Research Unit (SRU), National Water Research Center (NWRC)

Supervised by

Prof. Yehia Kamal Abdel-Monim

Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University

Prof. Samy Abdel-Fattah SaadDirector, Hydraulic Research Institute,
National Water Research Center

Prof. Hoda Kamal Soussa

Irrigation and Hydraulics Dept., Faculty of Engineering, Ain Shams University Prof. Ahmed Moustafa Moussa

Head of River Engineering Dept., Nile Research Institute, National Water Research Center

Cairo 2020

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

Management of Contaminants Spills in Watercourses

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Ιn

Civil Engineering
Irrigation and Hydraulics Engineering

Submitted by

Dalia Hassan Mohamed Shehata

B. Sc. in Civil Engineering M. Sc. in Civil Engineering (Irrigation and Hydraulics), 2014 Assistant Researcher, Strategic Research Unit (SRU), National Water Research Center (NWRC)

Examiners' Committee

Name and Affiliation	Signature
Prof. Sameh Abdel-Gawad Faculty of Engineering, Cairo University	
Prof. Abdel Kawi Mokhtar Khalifa Faculty of Engineering, Ain Shams University	
Prof. Yehia Kamal Abdel-Monim Faculty of Engineering, Ain Shams University	
Prof. Ahmed Moustafa Ahmed Moussa Nile Research Institute, National Water Research Center	

Date: February 2020

STATEMENT

This thesis is submitted as a partial fulfillment of Doctor of Philosophy Degree in Irrigation and Hydraulics Engineering, Civil Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Signature :

Date : February 2020

RESEARCHER DATA

Name : Dalia Hassan Mohamed Shehtata

Date of birth : 18th October, 1981

Place of birth : Cairo, Egypt

Last academic degree : Master Degree

Field of specialization : Irrigation and Hydraulics Engineering,

Civil Engineering.

University issued the degree: Faculty of Engineering, Ain shams

University.

Date of issued degree : 2014.

Current job : Assistant Researcher, Strategic

Research Unit, National Water Research Center

(NWRC)

THESIS SUMMARY

Most watercourses are subjected to the threats of contaminant spills. The Nile River is the main water source for all Egyptian cities around its banks, especially in Upper Egypt where no rainfall exist. The southern reach of the Nile receives considerable amounts of agricultural, industrial and municipal wastewater at different sites along its mainstream.

The goal of this research is to provide a risk assessment to evaluate contamination crisis due to a spill event as to enable decision-makers to take mitigation actions. As well as, a Risk Matrix provides a quick response that can be taken immediately after a spill is detected. This assessment aids in understanding and studying the effects of spill especially on drinking water supply.

A one-dimensional model is created in HEC-RAS to simulate the hydrodynamics of the river and evaluate the water quality variability in a reach of 144 km long selected and schematized on the Nile River.

Following model calibration, a comparative analysis was performed to determine the accurate values of dispersion coefficients based on the real measured data at several monitoring stations located along the studied area.

A simulation of Contaminant spill in the studied reach of the Nile River was performed to determine the vulnerable area and assess the correspondent real travel time. Two scenarios of spill event were chosen and studied using the HEC-RAS hydrodynamic and water quality modules.

The spill scenarios were run to simulate the transport of 500 tons of spilt phosphate into the Nile River.

Results of spill simulation revealed that the travel time of spilt phosphate lies between 66 to 96 hours to cross the studied reach according to the flow condition. The higher the dispersion coefficient, the faster the pollutant spread and the lower pollutant concentration in the study reach.

An integrated system consists of risk assessment maps and risk matrix was concluded and spill characteristics are recorded at different downstream recipients.

Key words: Contaminants Spill – Water Quality Modeling – Dispersion Coefficient – Risk Assessment – Risk Matrix

ACKNOWLEDGMENTS

Thanks to Allah who guides me to the straight path and paves the way for all my works.

I wish to express my deepest gratitude and sincerest appreciation to the supervision committee; **Prof. Dr. Yehia Kamal Abdel-Monim,** professor of Irrigation & Drainage Engineering, Faculty of Engineering, Ain Shams University, **Prof. Dr. Samy Abdel-Fattah Saad,** the Director of Hydraulic Research Institute, National Water Research Center, **Prof. Dr. Hoda Kamal Soussa**, professor of Water Resources Engineering, Faculty of Engineering, Ain Shams University, and **Prof. Dr. Ahmed Moustafa Moussa**, Head of River Engineering Department, Nile Research Institute, National Water Research Center for their support, continuous encouragement, helpful advice, valuable suggestions, guidance and constructive comments towards the successful completion of this study.

I would like to express my deep thanks and appreciation to all who have helped me in this study.

Finally, I would like to express my special thanks to my family, especially to my parents, my husband and my daughters for their endless support, patience and love. This study could not be done without their support.

Dalia Hassan Shehata

February, 2020

Table of Contents

Chapter 1: Introduction	1
1.1 General	1
1.2 Problem identification	2
1.3 Study objectives	2
1.4 Thesis Layout	3
Chapter 2: Literature Review	6
2.1 Introduction	6
2.2 Environmental risk assessment of contaminants spill	6
2.3 Spill Accidents in Nile River	7
2.4 Studies of Pollutant Spills in Water bodies	14
2.5 Summary	22
Chapter 3: Materials and Methods	25
3.1 Scope of the Work	25
3.2 Study Reach Description	26
3.3 Methodology	28
3.4 Data Collection	32
3.4.1 Collected Data for the Hydrodynamics Simulation	32
3.4.2 Collected Data for the Water Quality Simulation	32
Chapter 4: Hydrodynamics Modeling	34
4.1 HEC-RAS: hydrodynamic module	34
4.1.1 Model Description	34
4.1.2 Theory concept of HEC-RAS 1D Steady Flow Simulation	35
4.2 HEC-Geo RAS	39
4.3 GIS System: ArcGIS	40
4.4 Model setup	42
4.4.1 Topography of the Studied Reach	42

4.4.	2 Building the Schematic of the Studied Reach	.43
4.4.	3 Importing GIS Data to HEC-RAS	.52
4.5	Completing the Flow Data and Boundary Conditions	.55
4.6	verification and calibration of Hydraulic Simulation in HECRAS	.57
4.7	Exporting the HEC-RAS Results	.59
Chapte	er 5: Mapping Analysis of Steady flow Simulations Results	.60
5.1	Introduction	.60
5.2	Water surface level	.60
5.3	Water depth (The inundation depth)	.65
5.4	Velocity Mapping	.69
Chapte	er 6: Water Quality Modeling	.76
6.1	Introduction	.76
6.2	HEC-RAS: Water Quality module	.77
6.3	Pollution Sources and Sinks in the Studied reach	.78
6.4	Theory Concept of HEC-RAS Water Quality Simulation	.83
6.5	Boundary and initial Condition Water Quality Data	.86
6.6	Calibration of Water Quality Simulation in HECRAS	.88
•	er 7: Assessment of Longitudinal Dispersion Coefficient Computation in RAS	.90
7.1	Introduction:	.90
7.2	Computation models of Longitudinal Dispersion Coefficient	.90
7.3	Comparative analysis of Longitudinal Dispersion Coefficient equations	.94
7.3.	1 Dissolved Oxygen (DO)	.94
7.4	Biological Oxygen Demand (BOD)	.96
7.5	Nitrate (NO3)	.98
7.6	Phosphate (PO4)	100
7.7	Results of the Dispersion Coefficient equations analysis	101
Chapte	er 8: Modeling of Contaminants Spill in Nile River	102
8 1	Introduction	102

8.2 Spill Scenario Simulations	105
8.3 Phosphate Studies	108
8.4 Results and Analysis of Spill Modeling	109
8.4.1 Phosphate concentration in each water quality cell	109
8.4.2 Risk Assessment of receptors (DWTPs)	117
8.4.2.1 Permissible limits of phosphate Drinking Water	117
8.4.2.2 Risk Assessment maps of DWTPs during Maximum and M 118	inimum Flow
8.4.3 Risk Matrix	125
Chapter 9: Conclusion and Recommendations	128
9.1 Summary	128
9.2 Conclusion	129
9.3 Recommendations for Future Work	121
9.5 Recommendations for ruture work	131

List of Figures

Figure 1: Phosphate Spill into Nile River in Qena City, 2015	.9
Figure 2: Oil Spill from floating hotel into Nile River, Luxor City, Egypt, 2017	11
Figure 3 : Phosphate Spill from riverine unit in Assiut, 2017	11
Figure 4: Phosphate Spill in the Walidiya Canal, 2018	12
Figure 5 : Oil Spill in Esna City	13
Figure 6: The Applied integrated oil spill model and the GIS based impact assessment	16
Figure 7 : The "4-step-3-model" Framework Diagram	17
Figure 8 : Location of the Studied Reach	26
Figure 9: Monitoring Stations located along the studied reach	27
Figure 10: Water Level Gauges located within the study reach	28
Figure 11: The Work Flow of the research methodology	31
Figure 12: Sub- reaches segment between two cross sections (Rinde, 2015)	36
Figure 13: Representation of the Energy Equation Terms (Brunner, 2016b)	37
Figure 14: HEC-GeoRAS toolbar in the ArcMAp	39
Figure 15: Process flow diagram for using HEC-RAS with GIS and HEC-GeoRA	١S
(T.Ackerman, 2012)	41
Figure 16: A Triangulated Irregular Network (TIN) for the Studied Reach	42
Figure 17 : Drawing Centerline of the Studied Reach	44
Figure 18: Drawing Bank lines of the Studied Reach	45
Figure 19: Cross-section Cut lines is perpendicular to the flow path of the studied reach4	47
Figure 20: Geometric data plotting in HEC-RAS of cross-sections of Studied Reach	48
Figure 21: Studied Reach Associated with Cross-sections in Arc GIS and HEC-RAS4	49
Figure 22 : String Model for Geometric Cross-Section Interpolation	50
Figure 23: Export Geometry data from ARC-MAP and Import it into Hec-RAS	53
Figure 24 : Ground Profile of the Studied Reach (Bed Levels)	53
Figure 25: Cross Sections (River Stations) of Studied Reach in HEC-RAS	54
Figure 26: Steady Flow Boundary Conditions of the Studied Reach	56
Figure 27: Steady Flow Simulation of Studied Reach in HEC-RAS	56
Figure 28: Comparison between the Measured and the Simulated Water Surface Profile f	or
Different Flows	58