

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Effect of Depth of Anaesthesia on the Severity of Mitral Insufficiency by Transesophageal Echocardiography

Thesis

Submitted for Partial Fulfillment of Master Degree in **Anaesthesia**

By

Ehab Essam Khamis Al Hanash M.B.B.Ch., Faculty of Medicine, Alexandria University

Under Supervision of

Prof. Dr. Nabila Abd El Aziz Fahmy

Professor of Anaesthesia, Intensive Care, Pain Management Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Wael Reda Hussein

Assistant Professor of Anaesthesia, Intensive Care, Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

In fact, I can not find meaningful words to express my extreme thankfulness, profound gratitude and deep appreciations to my eminent **Prof. Dr.**Mabila Abd El Aziz, Professor of Anaesthesia, Intensive Care, Pain Management, Faculty of Medicine- Ain Shams University for her majestic generous help, guidance, kind encouragement and great fruitful advice during supervision of this work.

Also, I'm deeply grateful to Ass. Prof. Dr. Wael Reda Hussein, Professor of Anaesthesia, Intensive Care, Pain Management, Faculty of Medicine-Ain Shams University for his valuable help, assistance, encouragement and support through devoting his time to facilitate the production of this work.

Finally, I would like to express my deepest thankfulness to my Family for their great help and support.

Ehab Essam Khamis Al Hanash

Tist of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	8
Introduction	1 -
Aim of the Work	15
Review of Literature	
■ Depth of Anaesthesia & BIS	16
Mitral Valve	31
■ Transoesophageal Echocardiography	50
Patients and Methods	77
Results	85
Discussion	93
Summary and Conclusion	108
References	
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
ACC	American College of Cardiology
	American Cottege of Caratology Auditory evoked potential
<i>AF</i>	
	Anerican Heart Association
	Anterior mitral leaflet
	Anaesthesiologists
	Anaestnestotogists Atrioventricular valves
	Brainstem Auditory Evoked Potential
	· ·
BIS	-
<i>Bp</i>	-
<i>Bpm</i>	-
	Coronary artery bypass graft
CS	· ·
<i>DM</i>	
	Electrocardiography
	Electro-encephalogram
<i>EF</i>	-
<i>Ep</i>	-
	Effective regurgitant orifice area
	Frontalis electromyogram
	General anaesthesia
	Gastrointestinal tract
<i>HTN</i>	· -
<i>ICP</i>	Intracranial pressure
<i>JA</i>	Jet area
<i>LAD</i>	Left anterior descending artery
<i>LLAEP</i>	Long Latency Auditory Evoked Potential
<i>LOC</i>	$ Lower\ oe sophage al\ contract il ity$
LV	Left ventricle
LV	Left ventricle
	Left ventricular internal diameter in
	$\dot{diastole}$

Tist of Abbreviations cont...

Abb.	Full term
LVIDS	Left ventricular internal diameter in systole
	Left ventricular outflow tract
	Mean arterial pressure
	Middle Latency Auditory Evoked Potential
	Mitral regurgitation
	Magnetic resonance imaging
	Mitral stenosis
<i>OP</i>	
	Proximal isovelocity surface area
	Posterior mitral leaflet
PW	· · · · · · · · · · · · · · · · · · ·
	Rheumatic heart disease
	Systolic anterior motion
	Standard deviation
SEMG	Spontaneous surface electromyogram
	Spontaneous lower oesophageal
	contractions
SSEP	Somatosensory evoked potential
	Systemic vascular resistance
<i>TEE</i>	Transesophageal echocardiography
TIVA	Total intravenous anaesthesia
<i>TTE</i>	Transthoracic echocardiography
	Vena contracta
<i>VEP</i>	Visual evoked potential

Tist of Tables

Table No.	Title	Page No.
Table 1:	Shows component of PRST score	19
Table 2:	BIS values	27
Table 3:	Shows demographic data regarding gender, weight, and height.	•
Table 4:	Shows demographic data regarding diamellitus, hypertension, and fibrillation	atrial
Table 5:	Operative data between high BIS & loveregarding heart rate, systolic pressure, diastolic blood pressure, mean arterial blood pressure	blood and
Table 6:	Operative data between high BIS & loveregarding maximum regurgitant jet width of vena contracta, LVIDD, LV and ejection fraction	area, VIDS,

List of Figures

Fig. No.	Title	Page No.
Figure 1: Figure 2:	Clinical correlations of the BIS index BIS values in association with v degrees of narcosis	arious
Figure 3:	A drawing of Carpentier's classificate the mitral valve	
Figure 4:	Mitral valve anatomy (looking towa left ventricle from posterior to anteri	
Figure 5:	Carpentier's classification of regurgitation (MR) based on leaflet n	
Figure 6:	Schematic views showing mitral prolapse with chordae rupture wit posterior leaflet going above the arplane (interrupted lines) in the chamber (left) and long-axis (right) v	th the nnular four-
Figure 7:	Interactions of sound and tissue	64
Figure 8:	Manipulating the TEE probe	69
Figure 9:	Lateral chest x-ray depicting r positions of the heart (black outline), (white line), and esophagus (yellow line	, aorta
Figure 10:	The 20 basic TEE views	70
Figure 11:	Simultaneous multiplane transesop echocardiographic image display	•
Figure 12:	Schematic of the MV with leaflet scall segments) labeled	-
Figure 13:	Ratio between male and female patie	ents86
Figure 14:	Descriptive data of patients with HTN, AF.	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 15:	Shows bar chart for mean (arith average) of heart rate in low BIS and BIS.	d high
Figure 16:	Shows bar chart for mean (arith average) of systolic blood prediastolic blood pressure, and mean as blood pressure in low BIS and high B	ssure, rterial
Figure 17:	Shows bar chart for mean (arith average) of maximum regurgitant je and width of vena contracta both it BIS and in high BIS	t area n low
Figure 18:	Shows bar chart for mean (arith average) of left ventricular in diastolic diameter and left ventrinternal systolic diameter both in located in high BIS.	ternal ricular w BIS
Figure 19:	Shows bar chart for mean (arith average) of ejection fraction in low and high BIS	v BIS

Introduction

valuation of the degree of mitral regurgitation (MR) is Crucial during anaesthesia for mitral valve surgery. The degree of MR may change during anaesthesia. During general anaesthesia, there is an overall decrease in sympathetic tone, myocardial contraction, preload and afterload. The clear effect can impact pre-existing MR and may lead to measurement values different from the pre-operative assessment values (Ahn et al., 2019).

The most common valvular heart disease is the mitral valve regurgitation. The causes of MR are either primary which is related to the mitral valve apparatus, or secondary which is related to left ventricle. Mitral valve apparatus is a dynamic structure consisting of annulus, which separates the left atrium and left ventricle it also gives attachment to the mitral valve. It is not a rigid fibrous ring but pliable changing shape during the cardiac cycle, mitral valve also consists of two leaflets, tendinous chords and the papillary muscles, the leaflets are referred to as anterior and posterior, also as aortic and mural, the posterior (mural) leaflet is narrow and extends two-thirds around the left atrioventricular junction within the ventricle. The posterior leaflet has clefts that form three scallops. These scallops do not extend all the way through the leaflet to the annulus. Carpentier's nomenclature describes the most lateral segment as P1, which lies adjacent to the anterolateral

commissure, P2 is central, and most medial is P3 segment, which lies adjacent to the posteromedial commissure. The anterior leaflet of mitral valve is much broader than the posterior leaflet, comprises one third of the annular circumference. The anterior leaflet is also divided imaginary into three regions labelled A1, A2 and A3 corresponding to the adjacent regions of the posterior leaflet. The tendinous cords are fan-shaped running from the papillary muscles and inserting into the leaflets, there are three types of chordae according to where they attach Primary chords attach to the free edge of the rough zone of both leaflets. Secondary chords attach to the ventricular surface in the body of the leaflets. The tertiary found in the posterior leaflet chords only. The are posteromedial papillary muscle gives chords to the medial half of both leaflets (P3, A3 and half of P2 and A2). Similarly, the anterolateral papillary muscle chords attach to the lateral half of the mitral leaflets (A1, P1 and half of P2 and A2) (El Sabbagh et al., 2018).

Complete coaptation and symmetrical overlap of both mitral leaflets is essential in preventing regurgitation. Since there are a number of ways in which valve failure may occur, it is useful to recognize the underlying etiology, as this helps in initiating the process of understanding the mechanisms involved in valve failure. Carpentier's classification describes leaflet motion in relation to the mitral annular plane. Type 1 describes normal leaflet motion. Mitral regurgitation jet tends

to be central and due to either perforation of the leaflet, such as trauma or endocarditis, or annular dilatation, usually the result of left ventricular disease. Type 2 describes excessive leaflet motion above the annular plane into the left atrium and is a result of leaflet prolapse usually the result of degenerative disease. Finally type 3 describes leaflet restriction and is categorized into two types; type 3a, where the restriction is throughout the cardiac cycle, i.e. in systole and diastole (usually the result of rheumatic valve disease) and type 3b, where the leaflet restriction is seen in systole alone (usually the result of regional wall motion abnormalities seen in ischaemic mitral regurgitation). The commonest mitral regurgitation degenerative aetiologies (60%),rheumatic are (postinflammatory, 12%) and functional (25%). The latter includes 'ischaemic' mitral regurgitation. Other less common causes include congenital abnormalities and endocarditis. With all these aetiologies mitral annular (or orifice), dilatation is observed to varying degrees (Karen et al., 2010).

Of the many intra-operative cardiac monitoring used nowadays, none has provided as much beneficence as echocardiography. Transesophageal echocardiography is the study of the heart from the esophagus and is achieved by mounting a small transducer on the tip of a flexible endoscope. The close relation of the esophagus to the posterior surface of access problems associated with heart overcomes transthoracic imaging. Since its introduction into clinical