

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Role of Circulating Myeloid-Derived Suppressor Cells in Pathogenesis of Immune Thrombocytopenia in Children and Adolescents

A Thesis

Submitted for partial fulfillment of Master degree in Pediatrics

By

Fatma Ahmed Bayomi

M.B., B.Ch (2009). Faculty of Medicine. Ain Shams University

Under Supervision of

Prof. Dr. Nevine Gamal Andrawes

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Tarif Hamza


Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr. Heba Gomaa Abd Eiraheem

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2020

Acknowledgments

First and foremost, I feel always indebted to Allah, the **Most Beneficent** and **Merciful**, Who gave me the strength to accomplish this work,

I would like to forward my sincere appreciation to **Dr. Nevine Gamal Andrawes**; Professor of Pediatrics, Ain Shams University, for giving me the privilege of working under her supervision, also for dedicating much of her precious time, and wide experience that guided this work to succeed.

Also, I am deeply indebted to **Dr. Mohamed Tarif Hamza**, Professor of Clinical pathology, Ain Shams University, for his utmost help, kind indispensable guidance, valuable instruction.

I would like to express my deep and sincere gratitude and thanks to **Dr. Heba Gomaa Abd El Raheem**, Lecturer of pediatrics, Ain Shams University, for her valuable help and tremendous effort she offered me during preparation of this study and for dedicating much of her precious time.

I extend my sincere thanks and appreciation to Dr. Mohamed Shoman, for the useful assistance he provided and technical support.

A due thanks to the patients who agreed to participate in this study and helped us to reach our aim and results.

I extend my deep gratitude to my family and my husband for their generous support.

Fatma Ahmed Bayomi

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Abstract	vii
Introduction	1
Aim of the Work	4
Review of Literature	4
Patients and Methods	58
Results	67
Discussion	90
Summary	98
Conclusion	102
Recommendations	103
References	104
Arabic Summary	<u></u>

List of Abbreviations

Abbr.	Full-term
ACK	: Ammonium Chloride Potassium
ANA	: Anti-Nuclear Antibodies
APS	: The antiphospholipid syndrome
Arg1	: Arginase 1
ASH	: The American Society of Hematology
BAFF	: B-lymphocyte Activating Factor
\mathbf{BM}	: Bone marrow
BMMCs	: Bone Marrow Mononuclear Cells
BSA	: Bovine Serum Albumin
Cag A	: Cytotoxin - associated gene A
CIN	: Chronic Idiopathic Neutropenia
CMPs	: Common Myeloid Progenitors.
CMV	: Cytomegalovirus
COVID 19	: Corona Virus Disease
COX1	: Cyclo-Oxygenase 1
CRP	: C- Reactive Protein
CSFs	: Colony-Stimulating Factors
DC	: Dendritic Cell
DXM	: Dexamethasone
EBV	: Epstein Barr Virus
EDTA	: Ethylene Diamine Tetra Acetic acid
ESR	: Erythrocyte Sedimentation Rate
eTPO	: Endogenous Thrombopoietin
FcγR	: Fc Gamma Receptor
fl	: Femtoliters

g/dl : Grams per decilitre

GCs : Glucocorticoids

GPs : Platelet Membrane Glycoproteins

H Pylori : Helicobacter pyloriHCV : Hepatitis C Virus

HD-DXM: High Dose Dexamethasone

HIV : Human Immunodeficiency Virus

HLA : Human leucocyte antigenHPA : Human platelet antigen

HRQoL: Health Related Quality of Life

HSCT: Hematopoietic Stem Cell Transplantation

ICIs : anti-Checkpoint Inhibitors

IDO : Indoleamine 2,3 Di-Oxygenase

IgG : Immunoglobulin GIgM : Immunoglobulin M

IL1-RA : Interleukin 1 Receptor Antagonist

IL10 : Interleukin 10

ITP : Immune thrombocytopenia
IVIG : Intravenous Immunoglobulins
IWG : International Working Group
MCV : Mean Corpuscular Volume

MDSCs : Myeloid-Derived Suppressor CellsMHC : Major Histocompatibility Complex

MICA : MHC I chain related gene A

Mi RNA : Micro RNAML : Milliliters

MO-MDSCs: Monocytic Myeloid-Derived Suppressor Cells

ms : Months

MΦ : Macrophage

NOS : Nitric Oxide Synthase 2

PBMCs: Peripheral Blood Mononuclear Cells

PBS : Phosphate Buffered Saline

PD-L1 : Programmed Death-Ligand 1

PTPN22 : Protein Tyrosine Phosphate Non receptor type22

RA : Rheumatoid Arthritis

RhIG : Rh_oD Immune Globulin

ROS : Reactive Oxygen Species

SLE : Systemic Lupus Erythematosus

TCR: T-cell Receptor

T1D : Type 1 Diabetes mellitus

Th1 : T helper 1 **Th2** : T helper 2

TGF-β : Transforming Growth Factor - beta

TLC: Total Leukocytic Count

TNF- α : Tumor Necrosis Factor - alpha

TPO-R: Thrombopoietin Receptor

TPO-RA: Thrombopoietin Receptor Agonist

Tregs : Regulatory T cells

USA : United States of America

List of Tables

Table No.	Title	Page No.
Table (1):	Polymorphisms associated with ITP.	12
Table (2):	The role of infections in ITP pathogenesis.	14
Table (3):	Summary of ASH 2019 recommendations	22
Table (4):	Recommendations from 2011 ASH guideline for ITP that are not address in the 2019 ASH guideline on ITP	
Table (5):	Standard first-line therapy for ITP	31
Table (6):	Demographic data of Patients groups	67
Table (7):	ITP activity among patients' groups	69
Table (8):	Comparison between patients and con- regarding some demographic data	
Table (9):	CRP, ALT and S. Creatinine am studied patients with ITP	_
Table (10):	Viral serology among studied pati with ITP	
Table (11):	Comparison between patients with and control as regards hematological d	
Table (12):	Comparison between Patients controls regarding MDSCs level	
Table (13):	Comparison between different type ITP regarding demographic data	

Table (14):	Comparison between different types of ITP regarding modality of treatment	77
Table (15):	Comparison between different types of ITP regarding MDSCs	78
Table (16):	Comparison between acute ITP and control regarding demographic data and laboratory data	79
Table (17):	Comparison between persistent ITP and control regarding demographic data and laboratory data	82
Table (18):	Comparison between chronic ITP and control regarding demographic data and laboratory data	82
Table (19):	Comparison between patients with active disease status and in remission regarding hematological parameters	86
Table (20)	Correlation between level of MDSC and some parameters	89

List of Figures

Figure No.	Title	Page No.
Figure (1):	Immune thrombocytopenia pathogenesis	15
Figure (2):	The immune thrombocytop purpura bleeding score assessment	
Figure (3):	Therapeutic mechanisms of current treatments	
Figure (4):	Tolerance to self-antigens	41
Figure (5):	Role of Tregs in ITP	46
Figure (6):	Myeloid cell differentiation unnormal and tumor-induced condition	
Figure (7):	Role of MDSCs	51
Figure (8):	Schematic of possible pathway MDSC differentiation in cancer	
Figure (9):	Schematic role of MDSCs autoimmune diseases	
Figure (10):	Principle of the test	64
Figure (11):	Representative flow cyton showing labelling and gating strate for myeloid-derived suppressor (MDSC). MDSCs were defined CD33+/CD11b+/HLA-DR- cells	egies cells d as
Figure (12):	Classification of ITP in patients g according to onset of presentation.	_

Figure (13):	Different types of ITP according to activity
Figure (14):	Comparison between Patients and Controls regarding Sex
Figure (15):	Comparison between Patients and Controls regarding PLT count
Figure (16):	Comparison between Patients and Controls regarding MDSCs level
Figure (17):	Comparison between different types of ITP regarding disease interval
Figure (18):	Comparison between different types of ITP regarding age
Figure (19):	Comparison between Acute and Controls regarding PLT level
Figure (20):	Comparison between Acute and Controls regarding MDSCs level 80
Figure (21):	Comparison between Chronic ITP and Controls regarding PLT level
Figure (22):	Comparison between Chronic and Controls regarding MDSCs level
Figure (23):	Sensitivity & Specificity of MDSCs level

Abstract

Background: Regulatory T cells have an immunosuppressive function on T cell activation. They are involved in pathophysiology and treatment of immune thrombocytopenia (ITP). Circulating myeloid–derived suppressor cells (cMDSCs) are involved in immune dysregulation in ITP. Study objective was to determine the mean level of MDSCs in acute, persistent and chronic ITP, and its impact on treatment modalities and prognosis. Patients and Methods: Forty-one patients with ITP were recruited from Pediatric hematology clinic, Ain Shams University. They were classified into acute, persistent and chronic. they were compared to 20 age and gender matched as healthy controls. All patients were subjected to history taking with emphasis on age of presentation, disease duration and treatment modalities, thorough clinical examination. Mean values of CRP, ALT, S. Creatinine were collected from patients' files. All study participants have performed CBC (Coulter), MDSCs by flow cytometry. Secondary thrombocytopenia was excluded. Results: Acute ITP was detected in 29%, 24% had persistent and 46% had chronic ITP. Their age ranged from 1- 16 years at study entry, 51.2% were male. Active disease was found in 58.5% while 41.4% in remission. No treatment was offered to 53% while 24% of patients were on steroids. MDSCs decreased significantly in ITP patients Vs control group (P < 0.001) while didn't show significant difference among patients' group regarding MDSCs level as P value =0.325 or with different treatment modalities. **Conclusion:** Reduced numbers of MDSCs play a role in pathogenesis of ITP. Yet, MDSCs didn't differ according to disease duration or treatment modalities.

Keywords: Immune Thrombocytopenia, Pediatric, T lymphocyte, MDSC