Locoregional recurrence in patients with node negative early breast cancer who received adjuvant hypofractionated radiotherapy regimen vs. conventional fractionation regimen after breast conservative surgery retrospective study

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Oncology and Nuclear Medicine

By

Engy Salah Ramzy Todary

M.B.B.C.H

Under Supervision of

Prof.Dr.Hany Mohammed Abd Elaziz

Professor of clinical Oncology and Nuclear Medicine Faculty of Medicine -Ain-Shams University

Prof. Dr. Dina Ahmed Salem

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine -Ain-Shams University

Dr. Amr Shafik Tawfik

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine Ain-Shams University

Faculty of Medicine
Ain Shams University **2019**

Acknowledgment

First, and foremost, I feel always indebted to Allah, the Most Kind and the Most Merciful.

Words can never express my hearty thanks and indebtedness to **Prof. Dr. Hany Mohammed Abd Elaziz,** Professor of clinical Oncology and Nuclear Medicine, Faculty of Medicine-Ain-Shams University, for his great support and continuous encouragement and guidance to complete this work. It was a great honor to work under his guidance and supervision.

I wish also to express my gratitude to **Prof. Dr. Dina Ahmed Salem,** Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine -Ain-Shams University, for her great efforts, kind advice, support and encouragement throughout the whole work.

My deepest appreciation and grateful thanks to **Dr. Amr Shafik Tawfik,** Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine Ain-Shams University, for his meticulous supervision, continuous guidance, and constructive criticism.

Last but not least, I can't forget to thank all members of my Family, specially my **Parents**, and my **Friends**, for their great support and pushing me forward in every step of my life.

Engy Salah Ramzy Todary

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	V
Introduction	1
Aim of the Work	4
Review of Literature	
Epidemiology and Etiology	5
Pathology	13
Management	31
Patients and Methods	104
Results	108
Discussion	153
Conclusion	159
Recommendations	160
Summary	161
References	163
Arabic Summary	

List of Abbreviations

Abbrev. Full-term

ABUS : Automated Breast Ultrasound System

AIs : Aromatase InhibitorsALN : Axillary Lymph NodeAR : Axillary Recurrence

ASTRO : American Society of Radiation Oncology

BCS : Breast Conservative SurgeryBCT : Breast Conservative Therapy

BSGI : Breast Specific Gamma Imaging

CEDM : Contrast Enhanced Digital Mammography
 CESM : Contrast Enhanced Spectral Mammography
 CFRT : Conventional Fractionation Radiotherapy

CMF : Cyclophosphamide, Methotrexate and Fluorouracil

DCIS : Ductal Carcinoma In Situ

DFS : Disease Free Survival

DWI : Diffusion-Weighted Image

EBCTCG: Early Breast Cancer Trialists' Collaborative Group

EQD2 : Equivalent Dose Delivered in 2 Gy fractions

ER : ER receptor

F : FractionG : Grade

HER2 : Human epidermal growth factor receptor 2

HFRT : Hypofractionated Radiotherapy

HHUS : Hand-Held USHP : Herceptin/Perjeta

IHC : Immunohistochemistry

ILC: Invasive Lobular Carcinoma

IMRT: Intensity Modulated Radiation Therapy

IORT : Intra-Operative RadiotherapyLCIS : Lobular Carcinoma In-Situ

LRR: Locoregional Recurrence
LVI: lymphovascular Invasion

MRI : Magnetic Resonance Imaging

NCCN : National Comprehensive Cancer Network

NICE: National Institute for Health and Care Excellence

OS : Overall Survival

PEM : Positron Emission Mammography

PR : Progesterone Receptor
ROR : Risk Of Recurrence

RS : Recurrence Score
SD : Standard deviation

SLN : Sentinel Lymph Node

SLNB : Sentinel Lymph Node Biopsy

SPSS : Statistical Package for the Social Sciences

TNBC: Triple Negative Breast Cancer

US : Ultrasound

WBI : Whole Breast Irradiation

List of Tables

Table No	o. Title	Page No.
Table (1):	The Van Nuys Prognostic Index Scoring System	
Table (2):	AJCC anatomic stage groups	49
Table (3):	Estimate of biologically effective of effects in lungs for four fractionation	
Table (4):	Normal tissue effects by fractschedule in START-A	
Table (5):	Normal tissue effects by fraction START-B	
Table (6):	Number of normal tissue events rep START-A and B trials	-
Table (7):	Meta-analysis of randomized comparing hypofractionated radioth conventionally fractionated radiother.	nerapy to
Table (8):	Patient assessed moderate/marked tissue effects in the arm or following lymphatic irradiation in A and START-B and START-pilot	shoulder START-
Table (9):	Physician assessed moderate/marked tissue effects in the arm or following lymphatic irradiation in A and START-B and START-pilot	shoulder START-
Table (10):	Epidemiological characters' dis between CFRT and HFRT groups	
Table (11):	Histopathological characters dis between CFRT and HFRT groups	

Table (12):	Treatment characteristics distribution in both arms of treatment:
Table (13):	Radiotherapy pulmonary toxicity between CFRT & HFRT:
Table (14):	Locoregional recurrence in the whole cohort
Table (15):	Distant metastasis in the whole cohort: 133
Table (16):	Comparison between patients who received CFRT vs. HFRT regarding TLC failure: 134
Table (17):	Comparison between patients who received CFRT vs. HFRT regarding disease free survival:
Table (18):	Comparison between patients who received CFRT vs. HFRT regarding overall survival: . 137
Table (19):	Correlation between TLC failure (TLC) and other factors
Table (20):	Correlation between ER receptor status and TLC failure
Table (21):	Correlation between HER 2 neu receptor status and TLC failure:
Table (22):	Correlation between radiotherapy delay and TLC failure:
Table (23):	Case processing summary of correlation between Ki 67 and TLC failure:

List of Figures

Figure No	Title	Page No.
Figure (1):	Invasive papillary carcinoma and intraductal papilloma	_
Figure (2):	Forest plot comparing Hypofractions standard fractionation for Grade 2/s skin reactions	3 acute
Figure (3):	Forest plot comparing hypofractional conventional fractionation for symparadiation pneumonitis	tomatic
Figure (4):	Forest plot comparing hypofractional standared fractionation in smptoma fracture	atic rib
Figure (5):	Forest plot comparing hypofractional standared fractionation in smptoma fracture	atic rib
Figure (6):	Forest plot of comparison: HFRT vs regarding OS	
Figure (7):	Forest plot of comparison: HFRT vs regarding DFS.	
Figure (8):	Comparison between patients received and patients received HFRT regarding	
Figure (9):	Comparison between patients r CFRT and patients received regarding menopausal state.	HFRT
Figure (10):	Comparison between patients received and patients received HFRT regarding	

Figure (11):	Comparison CFRT and regarding histo	patients	received	HFRT	. 115
Figure (12):	Comparison CFRT and regarding histo	patients	received	HFRT	. 116
Figure (13):	Comparison CFRT and regarding T sta	patients	received	HFRT	. 117
Figure (14):	Comparison CFRT and regarding N st	patients	received	HFRT	. 118
Figure (15):	Comparison CFRT and regarding ER	patients	received	HFRT	. 119
Figure (16):	Comparison CFRT and regarding PR	patients	received	HFRT	. 120
Figure (17):	Comparison CFRT and regarding Her	patients	received	HFRT	. 121
Figure (18):	Comparison CFRT and regarding Ki-6	patients	received	HFRT	. 122
Figure (19):	Comparison CFRT and regarding PNI	patients	received	HFRT	. 123
Figure (20):	Comparison CFRT and regarding LVI	patients	received	HFRT	. 124

Figure (21):	Comparison between patients received CFRT and patients received HFRT regarding carcinoma in situ
Figure (22):	Comparison between patients received CFRT and patients received HFRT regarding surgical margin status
Figure (23):	Comparison between patients received CFRT and patients received HFRT regarding radiotherapy OTT delay
Figure (24):	Comparison between patients received CFRT and patients received HFRT regarding surgery/radiotherapy interval 129
Figure (25):	Comparison between patients received CFRT and patients received HFRT regarding chemotherapy
Figure (26):	Comparison between patients received CFRT and patients received HFRT regarding radiotherapy Herceptin
Figure (27):	Survival curves of TLC between patients received CFRT vs. HFRT
Figure (28):	Survival curves of DFS between patients received CFRT vs. HFRT
Figure (29):	Survival curves of OS between patients received CFRT vs. HFRT
Figure (30):	Survival curves of TLC failure between patients with +ve ER receptors vs. –ve ER receptors
Figure (31):	Survival curves of TLC failure between patients with +ve Her2-neu receptors vs. – ve Her2-neu receptors

Figure (32):	Survival curves of TLC between patients with no delay or 7 days delay vs. OTT delay of > 7-14 delay vs. OTT > 2 weeks (orange)	143
Figure (33):	Survival curves of TLC between premenopausal & postmenopausal patients	144
Figure (34):	Survival curves of TLC failure between patients < 45 years old vs. patients ≥ 45 years old	145
Figure (35):	Survival curves of TLC failure between patients with -ve FH vs. patients with +ve FH	145
Figure (36):	Survival curves of patients with +ve PR receptors vsve PR receptors	147
Figure (37):	Survival curves of patients with T1 tumor stage vs. T2& T3 tumor stage	148
Figure (38):	Survival curves TLC failure between patients with less than 10 excised LNs vs. patients ≥ 10 excised LNs	148
Figure (39):	Survival curves of TLC failure between patients with histopathological grade (G) I & II vs. patients with G III	149
Figure (40):	Survival curves TLC failure between patients with LVI vs. patients without LVI	149
Figure (41):	survival curves of TLC failure between patients with CIS vs. patients with negative CIS	150

Figure (42):	Survival curves of TLC failure between patients who received adjuvant RTH ≤ 6 months after BCS vs. patients who received it > 6 months.	151
Figure (43):	Survival curves of TLC failure between patients who received CTH vs. patients who didn't receive CTH	151
Figure (44):	Survival curves of patients who received Herceptin vs. patients who didn't receive it in patients with Her 2neu +ve receptors	152

Introduction

cancer accounting for more than a million cases each year (Globocan, 2012), including low and middle income countries (WHO 2013), incidence rates are higher in north America, Australia, western and northern Europe, and lowest in Asia and sub-Saharan Africa (Torre et al., 2015), these international variation is likely attributed to societal changes as a consequence of industrialization such as changes in fat intake, body weight, age at menarche, reproductive patterns of fewer pregnancies and later age at first birth (Siegel et al., 2018). Breast cancer mortality rates have been decreasing since the 1970s which is likely attributed to improved screening modalities and adjuvant therapies (Kohler et al., 2015).

Breast cancer is treated with a multidisciplinary approach that involves surgical oncology, radiotherapy and medical oncology; these combined modalities have been associated with a reduction in breast cancer mortality (Kesson et al., 2012).

patients with early-stage breast cancer undergo primary surgery (lumpectomy or mastectomy) with or without radiation therapy (RT), followed by adjuvant systemic therapy based on primary tumor characteristics, such as tumor size, grade, number of involved lymph nodes, the status of estrogen (ER) and progesterone receptors (PR), and expression of the human epidermal growth factor 2 receptor (HER2) (**Taghian et al., 2019**).

Breast conserving therapy (BCT) is comprised of breast-conserving surgery (BCS) plus radiation therapy, randomized trials have demonstrated equivalent disease-free and overall survival (OS) between mastectomy and BCT (Litière et al., 2012).

The objective of adjuvant radiotherapy is the eradication of any tumor deposits remaining after surgery which reduces the risk of Locoregional recurrence (LRR) and improves breast cancer specific and overall survival (**Darby et al., 2011**).

Conventional Whole-Breast Irradiation (WBI) delivers 1.8 to 2 Gy daily fractions (F) over 4.5 to 5 weeks to a total dose of 45 to 50 Gy with or without a 10 to 16 Gy boost to the tumor bed over 5 to 8 fractions for a total dose of 60 to 66 Gy delivered over 6 to 7.5 weeks, while hypofractionated schedule, delivers more radiation per dose, but the overall treatment duration is shorter (40 to 42.5 Gy in approximately three to five weeks with or without a boost. The American Society for Radiation Oncology (ASTRO) strongly encourage the use of hypofractionated regimen in women with invasive breast cancer receiving WBI with or without

inclusion of the low axilla, the preferred dose-fractionation scheme is hypofractionated WBI to a dose of 4000 cGy in 15 fractions or 4250 cGy in 16 fractions (**Benjamin et al., 2018**). Cosmetic and disease outcomes have been found to be equivalent between both hypofractionated and conventional schedules as demonstrated in a meta-analysis of four randomized trials, in which 7095 patients were enrolled (**James et al., 2010**).

A boost to the tumor bed is recommended for patients with invasive breast cancer with any of the following criteria: $age \le 50$ years with any histopathological grade, or if AGE 51 to 70 years with high grade or a positive margin (Benjamin et al., 2018).

WBI is associated with acute toxicities that involve the area treated such as skin, muscle, and internal organs. Also it may cause long-term complications, including cardiotoxicity, lung injury, and second malignancies (**Taylor et al., 2017**).