

Role of Platelet Rich Plasma Therapy on Rotator Cuff Disease

Thesis

Submitted for partial fulfillment of M.D. degree in Physical Medicine, Rheumatology and Rehabilitation

Presented by

Mohammed Moustafa Metwaly Mohammed

(M.B., B.Ch) M.Sc, (Physical Medicine, Rheumatology and Rehabilitation)

Supervised by

Prof. Dr. Nagwa M. M. Nassar

Professor of Physical Medicine
Rheumatology and Rehabilitation Department
Faculty of Medicine, Ain Shams University

Prof. Dr. Henaz Farouk Khaled

Professor of Physical Medicine
Rheumatology and Rehabilitation Department
Faculty of Medicine, Ain Shams University

Dr. Dalia Mohamed Ezz El-Din

Assistant Professor of Physical Medicine, Rheumatology and Rehabilitation Department Faculty of Medicine, Ain Shams University

Prof. Dr. Hossam Moussa Sakr

Professor of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2020

دور العلاج بالبلازما الغنيه بالصفائح الدمويه في متلازمة الكم الدوار

رسالة

توطئة للحصول علي درجة الدكتوراه فى الطب الطبيعي والروماتيزم والتأهيل مقدمة من

الطبيب/ محمد مصطفى متولى محمد

بكالوريوس الطب و الجراحة- ماجستير الطب الطبيعي والروماتيزم والتأهيل تحت إشراف

أ.د/نجوى محمد محمود نصار

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب- جامعة عين شمس

أ.د/هيناز فاروق خالد

أستاذ الطب الطبيعي والروماتيزم والتأهيل

كلية الطب- جامعة عين شمس

د/داليا محمد عزالدين المكاوي

أستاذ مساعد الطب الطبيعي والروماتيزم والتأهيل

كلية الطب- جامعة عين شمس

أ.د/حسام موسى صقر

أستاذ الاشعه التشخيصيه

كلية الطب- جامعة عين شمس كلية الطب

جامعة عين شمس

۲.۲.

سورة البقرة الآية: ٣٢

Acknowledgments

First of all, many thanks will never be enough to express my endless gratitude to **Allah** for giving me the strength and support to carry out this work.

I would like to express my deep appreciation wrapped with great respect to Prof. Dr. Nagwa M. M. Nassar, Professor of Physical Medicine Rheumatology and Rehabilitation Department, Faculty of Medicine, Ain Shams University, who not only encouraged me but also provided tireless help and continuous guidance throughout this work.

I am greatly honored to express my deepest gratitude to Prof. Dr. Henaz Farouk Khaled, Professor of Physical Medicine Rheumatology and Rehabilitation Department, Faculty of Medicine, Ain Shams University, for her precious advices and valuable observations.

I would like to express my great honor and thanks to Ass. Prof. Dr. Dalia Mohamed Ezz El-Din, Assistant Professor in Physical Medicine, Rheumatology and Rehabilitation Department, Faculty of Medicine, Ain Shams University for her encouragement & expert supervision, who spent much time and effort to guide and support me.

Special thanks go to Prof. Dr. Hossam Moussa Sakr, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his help and experience.

Many thanks to all professors, staff and colleagues in our department, for offering help whenever I needed during this research.

Finally, I must thank my wife, parents, mother inlaw, sons, all members of my family and friends for their encouragement and support not only during the period of this research but also during my whole life.

CONTENTS

Sul	bjects					Page
• List of Abbreviations					I	
•	List of Table			III		
•	List of Figure		•••••	•••••	•••••	IV
•	Introduction			1		
•	Aim of the work				6	
•	Review of literature					
	Chapter (1):	Anatomy a the shoulde				7
	Chapter (2):	Rotator (rct)		_		38
	Chapter (3):	Platelet r Therapy		-	. ,	81
•	Patients and	methods	•••••	•••••	•••••	.107
•	Results	•••••	•••••	•••••	•••••	.142
•	Discussion	•••••	•••••	•••••	•••••	.166
•	Summary	•••••	•••••	•••••	•••••	.193
•	Conclusions	••••••	•••••	•••••	•••••	.196
•	Recommend	ations	•••••	•••••	•••••	.197
•	References	•••••	•••••	•••••	•••••	.198
•	الملخص العربي	•••••	•••••	•••••	•••••	.251

LIST OF ABBREVIATIONS

AC	Acromioclavicular
ACD	Anticoagulant Citrate Dextrose
ADP	Adenosine Di-Phosphate
	Angiogenesis-Related Cytokines
ATP	Adenosine Tri-Phosphate
C	Cervical
CBC	Complete Blood Picture
ECM	Extracellular Matrix
ELIZA	Enzyme-Linked Immunosorbent Assay
ESR	Erythrocyte Sedimentation Rate
ESWT	.Extracorporeal shock wave therapy
	Fasting Blood Sugar
FGF	Fibroblast Growth Factors
HGF	Hepatocyte Growth Factor
IGF-1	Insulin-Like Growth Factor-1
IL	Interleukin
IL-1β	Interleukin one beta
L	Lumbar
L-PRF	Leukocyte-Rich Platelet-Rich Fibrin
L-PRP	.Leukocyte-Rich Platelet Rich Plasma
MHz	Mega Hertiz
mm	. millimeter
mmHg	. millimeter Mercury
	Matrix Metallo-Proteases
MRI	Magnetic Resonance Imaging
MSU	Diagnostic Musculoskeletal Ultrasound
ng/L	
	Non-steroidal Anti-Inflammatory Drugs
OB	Optical Density
PDGF	Platelet Derived Growth Factor
pg/L	Picogram per Liter
	Pure Platelet-Rich Fibrin
P-PRP	Pure Platelet Rich Plasma
	Platelet Rich Plasma
	Rotator Cuff Disease
RCT	Rotator Cuff Tendinopathy

LIST OF ABBREVIATIONS CON.

RF	Rheumatoid Factor
ROM	Range of Motion
SGOT	Serum Glutamic Oxaloacetic Transaminase
SGPT	Serum Glutamate Pyruvate Transaminase
SLAP	Superior Labrum Anterior–Posterior
T	Thoracic
ΤΒΓ- β	Transforming Growth Factor-beta
TIMP	Tissue Inhibitor of Matrix Metalloproteinase
TNF- α	Tumor Necrosis Factor-alpha
TNF	Tumor Necrotic Factor
U/S	Ultrasound
VAS	Visual Analogue Scale
VEGF	Vascular Endothelial Growth Factor
WBC	White Blood Cell
WORC	Western Ontario Rotator Cuff
α	Alpha
μm	micrometer

LIST OF TABLES

Tab. No.	Subjects	Page
Table (1):	Occupation of the Patients	143
Table (2):	Shoulder Affection of the Patients	145
Table (3):	Baseline Shoulder Clinical Assessment	145
Table (4):	Baseline Shoulder Muscle Power Grading	146
Table (5):	Baseline Shoulder ROM Clinical Assessment.	146
Table (6):	Pre-injection Shoulder Clinical Special Tests	147
Table (7):	Pre-Injection Musculoskeletal Ultrasound Assessment of Rotator Cuff	149
Table (8):	Comparison between Different Clinical Scores before and after Injections	152
Table (9):	Comparison between Clinical Scores (by Hoc analysis) before and after Injections	153
Table (10):	Comparison of Cytokines before and after Injection.	155
Table (11):	Comparison of Musculoskeletal Ultrasound Assessment before and after Injection	156
Table (12):	Correlation between the Serum Levels of Cytokines and Other Methods of	
Table (13):	Assessments correlation between the changes of cytokine analysis and the changes in other methods of	
	assessments after 4 weeks	164

LIST OF FIGURES

Fig. No.	Subjects	Page
Figure (1):	A global view of all five joints of the shoulder	
	girdle	8
Figure (2):	Lateral view of the glenohumeral joint, right	
	shoulder	
Figure (3):	The sternoclavicular	10
Figure (4):	The subacromial space and subdeltoid bursa	11
Figure (5):	Anterior view of the bursae of the shoulder	13
Figure (6):	The axis of the shoulder	15
Figure (7):	Shoulder ROM	52
Figure (8):	Jobe's supraspinatus muscle test	53
Figure (9):	Lift off test	54
Figure (10):	Neer's impingement test	56
Figure (11):	Hawkin's impingement test	56
Figure (12):	The belly press test Quoted from Tennent et	
	al., 2003).	57
Figure (13):	Belly-off sign	58
Figure (14):	Bear hug test	59
Figure (15):	External rotation lag sign in neutral	60
Figure (16):	Depiction of the drop sign.	61
Figure (17):	Hornblower's Sign	62
Figure (18):	Speed's test	63
Figure (19):	Painful arc test.	.111
Figure (20):	Neer test.	.112
Figure (21):	Hawkins Test.	. 113
Figure (22):	Empty can or Jobe test	. 114
Figure (23):	Patte maneuver	. 114
Figure (24):	Gerber lift off test.	. 115
Figure (25):	Yergason's test	.116
Figure (26):	Yocoum's or Cross chest adduction test	. 117
Figure (27):	O'Brien's test	.118
Figure (28):	Apprehension test.	. 119

€ List of Figures

Figure (29):	Musculoskeletal assessment of the rotator cuff 12	4
Figure (30):	High resolution B-mode LOGIQ P5	
	ultrasonography	5
Figure (31):	(a) centrifuge device (Centerion 2006®,	
	England), (b) 50 ml falcon tube, and (c)	
	venesection set [butterfly 19-21gauge plus 60	
	ml syringe]12	.7
Figure (32):	PRP injection under musculoskeletal	_
	ultrasound guidance	
	Gender distribution among the participants14	2
Figure (34):	Hand Dominance for patients enrolled in the	
	study	
_	Side of shoulder affection	4
Figure (36):	Classification of shoulder affection before	_
	injection according to MSU of rotator cuff 14	
	Grade 2 rotator cuff lesion (Sever tendinosis 15	0
Figure (38):	Grade 3 rotator cuff lesion (Intrasubstance	
	abnormality	0
Figure (39):	Grade 4 rotator cuff lesion (Partial-thickness	1
	tendon tear	I
Figure 40:	Comparison between VAS before, at week 4	
T' (44)	and fter 3 months after injection	4
Figure (41):	Comparison between Clinical scores before, at	1
E: (42).	week 4 and after 3 months after injection	4
Figure (42):	Comparison between cytokine analysis before and at week 4 after injection	5
Figure (43).	Comparison between musculoskeletal	J
riguit (43).	ultrasound assessment before, at week 4 and 3	
	months after injection	6
Figure (44):	Correlation between the levels of IL-1β and	
-8	VAS before injection	9
Figure (45):	Correlation between the levels of VEGF and	
6 - (-)*	VAS before injection	9
Figure (46):	Correlation between the levels of IL-1β and	
5 ()	clinical scores before injection 16	0

€ List of Figures

Figure (47): Correlation between the levels of VEGF and	
clinical scores before injection	51
Figure (48): Correlation between the levels of VEGF and	
MSU grading before injection	52
Figure (49): Correlation between changes of the levels of	
VEGF and changes in VAS after 4 weeks16	54
Figure (50): Correlation between changes of the levels of	
IL-1β and changes in VAS after 4 weeks16	55
Figure (51): Correlation between changes of the levels of	
IL-1β and changes in Los Angeles Shoulder	
Score after 4 weeks	55

INTRODUCTION

Rotator cuff tendinopathy (RCT) and rotator cuff diseases (RCDs) are leading cause of shoulder pain and a significant source of disability and loss of work (*Kuijpers et al., 2006, Rha et al., 2013 and Whittle & Buchbinder, 2015*).

It is a common disorder; approximately 16% of the general population is believed to have RCD at any given time (*Erstad*, 2008). Its prevalence increases substantial with age and with occupations involving overhead activities. They are affecting more than 50% of population above 60 years (*Seitz et al.*, 2011).

In spite of the long standing history and many studies and reviews found in literature concerning RCDs and mechanism of development of tendon tear, the pathophysiology of rotator cuff tendon diseases is still a controversial topic and hasn't been fully understood (*Rha et al.*, 2013). The biochemical and molecular events leading to RCD and tear have not yet been defined and still a matter of debate (*Beasley et al.*, 2000; *Dean et al.*, 2012 and *Petterson et al.*, 2017).

Disease course pass through 3 stages begin with acute tendinitis then progress to fibrosis and partial tear, end finally in full thickness tear (*Kesikburun et al.*, 2013).

Two hypotheses including a combination of extrinsic and intrinsic mechanisms are generally thought to be responsible for the RCD (Dean et al., 2012), including anatomic dysfunctional biomechanical and causes. Subacromian impingement, tendon degeneration, alternation in tendon mechanical properties, increase tendon overload and overuse especially with overhead activities are contributing factors in disease progression and development of partial and full thickness (Tytherleigh-Strong et al., 2001, Lewis, 2009 and Seitz et al., 2011). Although the multiple factor which contribute to develop of RCDs pathophysiology, but the mechanical and biochemical events lead to cuff degeneration and tear need for further investigations and studies (Voloshin et al., *2005*).

potential role of inflammatory cytokines, The proteases and Angiogenesis-related cytokines (ARC) using remain unclear. Recent studies immunehistochemistry techniques and synovial fluid samples revealed that the hallmark of RCD pathogenesis including proinflammatory, anti-inflammatory process, an abnormal immune response, angiogenesis and altered variables of vascularity (Löhr & Uhthoff, 2007). Angiogenesis is a fundamental process and relationship between it and degenerative changes in RCDs is attracting increasing attention (Folkman, 1995). Vascular endothelial growth factor (VEGF) found to be highly expressed in degenerated tendon. This cytokine thought to play a pivotal role in

process of tendon degeneration and repair (Savitskaya et al., 2011).

signal As cytokines the normal process inflammation and repair, they play important role in cell chemotaxis, proliferation, matrix synthesis and remolding. These molecules have the potential to improve RCT healing (Petersen, 2005 and Savitskaya et al., 2011). IL-1β, TNF, IL-6, IL-10, proinflammatory cytokines and matrix metallo-proteases (MPP) expressed are subacromial bursa in patients with RCD (Voloshin et al., *2005*).

Accurate and sensitive methods for measuring and detection of cytokines are important for understand cytokine biology and biochemistry for assessment of cytokine involvement in pathophysiology and molecular mechanisms of RCDs (*Bauer*, 2008). The combat between proinflammatory, anti-inflammatory and angiogenic factors that end eventually in a failed healing response, which is considered to play a principle part in pathogenesis of chronic tendon diseases (*Fealy*, 2006 and Savitskaya et al., 2011).

Management of RCD without full thickness tear is mainly conservative (*Andrews*, 2005) with use of physiotherapy, manipulation, NSAID and local steroid injection with high rate or recurrence and persistent pain (*Mantone et al.*, 2000 and Chou et al., 2010). Lack of

healing response and limited ability of rotator cuff tendon to regenerate is the main cause of the unsatisfactory results of conservative treatment and considered to play a principal part in the pathogenesis of chronic tendon disease (*Rees et al.*, 2006). Therefor growth factors have been suggestive to be used to influence the healing process and promote tendon regeneration during treatment (*Rees et al.*, 2009 and and Wu et al., 2017).

Despite a growing body of research that has identified numerous cytokines that can positively affect tendon healing, there are significant limitations to single-factor therapy. Healing is a highly complex biological process with precise coordination. Application of a single exogenous factor does not mimic the highly coordinated spatial and temporal expressions of various factors that are required for cell proliferation, differentiation, matrix synthesis and eventual remolding. This limitation of single factor therapy forms the rationale for the use of Platelet rich plasma (PRP) and related substances to improve healing (Kaux & Crielaard, 2013). Because the alpha granules and dense granules in platelets contain several cytokines and other bioactive factors, PRP allows delivery of numerous cytokines in "physiological balance" (Rodeo et al. 2012).

PRP is obtained by blood centrifugation and contains a higher platelet concentration than whole blood (*Paoloni et al.*, 2011). Also it contain cellular component of plasma that settle after centrifugation as well as growth factors.