

Chemical and Biological Investigation of Certain Species Belonging to Genus *Cassia* Family (Caesalpiniaceae)

A Thesis Submitted

In Partial Fulfilment of the Requirements
for the Degree of Master in Pharmaceutical Sciences
(In Pharmacognosy)

By

Safaa Abdel Raouf Hafez Ali

Bachelor of Pharmaceutical Sciences,
Faculty of Pharmacy, October 6 University, 2005
Under the Supervision of

Dr. Ahmed Attia Seida Ph. D.

Professor of Pharmacognosy
Faculty of Pharmacy
Cairo University
President of October 6 University

Dr. Nahla A. Ayoub Ph. D.

Professor of Pharmacognosy Faculty of Pharmacy Ain Shams University

Dr. Samir Osman

Assoc. Professor of Pharmacognosy Faculty of Pharmacy October 6 University

Department of Pharmacognosy Faculty of Pharmacy Ain Shams University Abbasia, Cairo, Egypt 2019

To the memory of my dear father Abdel Raouf Hafez Ali And to my beloved mother

ACKNOWLEDGEMENT

I am deeply grateful to God, by the grace of whom this work was possible and whose guidance and protection secured every step of the road.

I would like to express my deepest gratitude, sincere and profound appreciation to the following people who significantly contributed to the work done in this thesis:

I would like to dedicate my appreciation, sincere gratitude and great indebtedness to **Prof. Dr. Ahmed Attia Seida**, President of October 6 University and Professor of Pharmacognosy, Faculty of Pharmacy Cairo University, for supervising the work, and for his kind effort and help and indispensable advice and guidance.

I wish to express my deepest thanks, love and appreciation to **Prof. Dr Nahla A. Ayoub**, Professor of Pharmacognosy, Ain Shams University for suggesting the research topic, continuous encouragement during the course of this work and for the systematic guidance and great effort she did during the work. I am indebted to her with every single word in this thesis as I feel lucky to be her student.

I would like to express my sincere gratitude to **Dr. Samir Osman**, Ass. Prof. of Pharmacognosy, Faculty of Pharmacy, October 6 University for his generous advice and encouragement throughout the work.

My deepest thanks and sincere appreciation, gratefulness and indebtedness to my God father **Prof. Dr. Abdel Naser Singab**, vice president of Ain Shams University, for his great support, advice and guidance and whose support was essential to complete this work.

I present my deepest thanks and gratitude to my other God father, **Prof. Dr. Mahmoud Koheil** professor of pharmacognosy, Dean of faculty of pharmacy, October 6 university, for his co-operation, kind support, constant encouragement and valuable time.

My sincere gratitude to my dear doctors in the pharmacognosy department, October 6 university Dr. Alaa Elhadad, Dr. Jilan Nazim, Dr. Ayat Emad, Dr. Amr Saad Eldin, Dr. Lina Jamil, Dr. Shereen Sameh, Dr.Khaled Abdel haleem for their valuable advice, continuous support and kind assistance.

Deep gratitude and thanks to **Prof. Dr. Farghaly Omar,** professor and head of pharmaceutical chemistry department, October 6 university, for his kind support and assistance in the pharmaceutical chemistry investigations.

I would like to thank my dear colleagues and friends; **Dr. Eman Eldeeb, Dr. Ahmed Gaweesh, Dr. Esraa Zakaria, Dr. Albraa Akram, Dr. Nourhan Hassan** for their continuous moral support, encouragement and love.

An acknowledgement to Ass. Prof. Mohamed El raey, Dr. Tamer Rgab and Dr. Mahmoud Emam, the national research centre, for their great help and effort.

A special word of gratitude to the great staff members of pharmacognosy department, Ain Shams University, dear Prof. Dr. Omaima El Dahshan, Prof. Dr. Sherwiet, Ass. Prof. Dr. Rola and Ass. Prof. Dr. Mohamed Ashour whose kindness and help were very valuable for me.

A special thank you note to my dear love and sisters **Dr.** Iriny Ayoub, Dr. Naglaa Saad Eldin, Nada Mohammed and my dear brother Dr. Ahmed Essam lecturers of pharmacognosy for their unforgettable support, generous advice and patience.

My deepest thanks and gratitude goes to dear my sister **Dr. Noha Swilam** and **Dr. Khaled Neamatalla**, Lecturers of pharmacognosy, British University in Egypt (BUE), for their indispensable help and great efforts in data interpretation.

I wish also to thank **Dr. Haitham Ali** for his kind help and support.

Appreciation to Ass. Prof. Dr. Kareem Eltobgy and Mr. Magdi for their valuable help and efforts in the analysis work.

Deep gratitude and thanks to **Prof. Dr. Mohamed Farag,** Professor of Pharmacognosy, Cairo University and The American University in Cairo (AUC) for his kind support, valuable time, patience and help.I am honored to have had the chance to work with him and learn a lot of knowledge, science and morals through dealing with such a great professor of pharmacognosy and a great teacher of life.

I also express my thanks to the technicians of the pharmacognosy department, October 6 University; Mrs. Amany Esa Mr. Mohamed Fathy, Mr. Alaa Madbouly, Samah, Om Mahmoud, Om Nasser, Om Tamer, Kamel. for their kind help and support.

A word of thanks and appreciation to my soul mate and friend **Dr.Sara Mohamed Hashim** for her moral support, endurance and lots of help.

I also wish to thank my second mother, sister and beloved friend **Dr. Sherifa Fahmy** Ass. Prof of Pharmacognosy, Cairo University and October 6 University for her moral support in completing this work and for her love and care.

Finally, I am deeply thankful to my dear family specially my beloved **mother**, whom her unconditional love and support during the hardest times gave me the light to see my way and to the memory of my late father whose soul was the inspiration for my soul to go on and never stop. Thank you **mum** and **dad**.

Table of Contents

Item	Page
LIST OF ABBREVIATIONS	I
LIST OF FIGURES	III
LIST OF TABLES	VII
INTRODUCTION	1
REVIEW OF LITERATURE ON GENUS CASSIA	
a- Chemical review of literature	5
b- Biological review of literature	36
TAXONOMY OF GENUS CASSIA	40
MATERIAL, APPARATUS AND METHODS	46
CHAPTER (1): PHYTOCHEMICAL STUDY OF CASSIA GLAUCA LEAVES	
Part I: UPLC-MS of chemical profile of Cassia glauca leaves	74
Part II: Phytochemical screening of <i>Cassia</i> glauca leaves	90
Part III: Value added components from plant marc of <i>Cassia glauca</i> leaves	
CHAPTER (2): GREEN SYNTHESIS OF SILVER NANO PARTICLES	130
CHAPTER (3):BIOLOGICAL STUDY OF CASSIA GLA	<i>UCA</i> 138
GENERAL SUMMARY	
CONCLUSION AND RECOMMENDATIONS	
REFERENCES	169
ARABIC SUMMARY	

List of Abbreviations

AcOH-6% 6% acetic acid

ANOVA Analysis of variance
Ag NPs Silver nanoparticles
AR Aldose Reductase
AO Acridine orange

ASP Aspartate

¹³C-NMR Carbon-13 Nuclear Magnetic Resonance

CC Column chromatography

CrI Crystallinity index

CID Collision-induced dissociation

d Doublet

dd Doublet of doublet**DMF** Dimethylformamide

DMSO- d_6 Deutrated Dimethylsulfoxide- d_6

DOX Doxorubicin *eq.* Equatorial

ESI-MS Electro-Spray Ionization Mass Spectrometry

ESI Electrospray ionization

ELISA Enzyme linked immunosorbent assay

EB Ethidium bromide

FTIR Fourier-transform infrared spectroscopy

FTMS Fourier transform MS
FBS Fetal bovine serum

GLU Glutamine

HepG2 Hepatocellular carcinoma cell line

¹H-NMR Proton Nuclear Magnetic Resonance

HPLC High-performance liquid chromatography

HESI Heated electrospray ion source

HR High resolution

IC₅₀ Inhibitory concentration by 50 %.

J value Coupling constant

LYS Lysine Leucine

LIT Linear ion trap

MIC Minimum inhibitory concentration

MS Mass spectrometry

MCF-7 Human breast adenocarcinoma cell line

MPa Megapascal

MF Molecular formula
MSn Tandem mass spectra

NMR Nuclear Magnetic Resonance Spectrometer

NCC Nano crystals cellulose PC Paper Chromatography

PDB Protein data bank
PDA Photodiode-array
PHE phenylalanine

q quartet

 $egin{array}{ll} R_f & & \mbox{Retardation factor} \ R_t & & \mbox{Retention time} \ RP & \mbox{Reversed phase} \ \end{array}$

s singlet

SEM Scanning electron microscopy
SPR Surface plasmon resonance

SER Serine triplet

TLC Thin Layer Chromatography

TEM Transmission Electron Microscope

UV Ultraviolet

UHPLC-MS Ultra-high performance liquid

chromatographtandem mass spectrometry

XRD X-ray diffraction

2D-PC Two dimensional paper chromatography

LIST OF FIGURES

	Figure	Page No.
1.	Chemical structure of reported anthraquinones, anthracenes, their compounds have been derivatives isolated from different <i>Cassia</i> species	10
2.	Chemical structure of reported phenolic compounds have been isolated from different <i>Cassia</i> species	24
3.	Chemical structure of reported miscellaneous compounds have been isolated from different <i>Cassia</i> species	31
4.	a) Tree of <i>Cassia glauca</i> x= 0.026, b) Leaves of <i>Cassia glauca</i> x= 0.9, c) Compound leaf of <i>Cassia glauca</i> x= 0.44, d) Leaflet of <i>Cassia glauca</i> x= 1, e-Flower of <i>Cassia glauca</i> , f-Pods of <i>Cassia glauca</i>	45
5.	Procedure of Separation of macromolecules of the biomass of <i>Cassia glauca</i> leaves marc	64
6.	UPLC-MS/MS chromatogram of the methanol extract of <i>Cassia glauca</i> leaves	75
7.	MS/MS spectrum of Caffeoyl hexoside at [M-H]-341	77
8.	MS/MS spectrum of Quercetin rhamnosyl- rutinoside at [M-H]- m/z 755	78
9.	MS/MS spectrum of Kaempferol rhamnosyl- rutinoside at [M-H]- m/z 739	79
10.	Expected fragmentation pattern of Kaempferol rhamnosyl-rutinoside	80
11.	MS/MS spectrum of Quercetin rutinoside (Rutin) at [M-H]- m/z 609	81
12.	Expected fragmentation pattern of Quercetin rutinoside (Rutin)	82

13.	MS/MS spectrum of Quercetin hexoside of [M-H]- at m/z 463	83
14.	Expected fragmentation pattern of Quercetin hexoside	84
15.	MS/MS spectrum of Kaempferol rutinoside at [M-H]- m/z 593	85
16.	MS/MS spectrum of Kaempferol hexoside at [M-H]- m/z 447	86
17.	MS/MS spectrum of at Isorhamnetin [M-H]- m/z 315	87
18.	MS/MS spectrum of Eriodictyol at [M-H]- m/z 287	88
19.	MS/MS spectrum of Apigenin at [M-H]- m/z 269	89
20.	FTIR of Cassia glauca extract	91
21.	Schematic figure for separation and isolation of compound 1 and 2	92
22.	1H NMR spectrum of compound 1	96
23.	Apt- NMR spectrum of compound 1	97
24.	Positive ESI-MS spectrum of Compound 1	98
25.	Negative ESI-MS spectrum of Compound 1	98
26.	Chemical structure of isolated kaempferol 3- O - α -L-rhamnopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside (kaempferol 3- O - β -D-rutinoside) from <i>Cassia</i>	
	glauca leaves	99
	1H NMR spectrum of compound 2	102
28.	1H NMR spectrum of compound 2	103
29.	Apt- NMR spectrum of compound 2	104
30.	Positive ESI-MS spectrum of Compound 2	105
31.	Negative ESI-MS spectrum of Compound 2	105

32.	Quercetin 3-O- α -L-rhamnopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside (Rutin) isolated from <i>Cassia glauca</i> leaves	106
33.	Structure of cellulose	107
34.	Structure of hemicellulose	110
35.	Structure of lignin	111
36.	Yield of extracted crude cellulose, hemicellulose and lignin from marc residue (w/w%) of <i>Cassia</i> glauca leaves	112
37.	FTIR of cellulose, hemicellulose and lignin	115
38.	FTIR spectroscopy of (a-Bleached b- α c- Nano crystalline) cellulose	118
39.	X-ray diffraction of (a-Bleached, b- α and c-Nano crystalline) cellulose	120
40.	Scanning electron microscope of a) bleaching cellulose, b) α -cellulose and c) nano crystalline cellulose	122
41.	Ag NPS synthesized using total aqueous extract, methanol fraction and remaining aqueous fraction of <i>Cassia</i> glauca leaves	132
42.	Synthesis of Ag NPs for the fractions of C. glauca	133
43.	The SPR band of Ag nanoparticles using total aqueous extract, methanol fraction and remaining aqueous fraction recorded by UV–vis spectra as a function of concentrations of <i>Cassia</i> glauca leaves	
		135
44.	The TEM images of total extract, methanol fraction and remaining aqueous fraction) of <i>Cassia</i> glauca leaves	136
45.	Dose response curves of cytotoxic study before and after nano (total extract, methanol fraction, remaining aqueous fraction), kaempferol rutinoside and rutin on HepG2	140

Dose response curves of cytotoxic study before and after nano (total extract, methanol fraction, remaining aqueous fraction), kaempferol rutinoside and rutin on MCF7	141
Dose response curves of cytotoxic study of kaempferol rutinoside and rutin on Caco	142
Surface map of SL0101 (green) co-crystallized with RS6K 2 (3aub); and the corresponding interaction diagram	146
Surface map of Kampferol-3-O-B-rutenoside (yellow) and the co-crystallized SL0101with RS6K 2 (3aub); and the corresponding interaction diagram	148
Surface map of Rutin (yellow) and the co- crystallized SL0101with RS6K 2 (3aub); and the corresponding interaction diagram	148
Mode of Cell death of Rutin, Kaempferol rutinoside and/or DOX on cell death mode and their effects on the percentage of different cell populations	150
MCF-7 cells stained by Acridine orange/ ethidium bromide	151
Cell Viability assay of combining kaempferol rutinoside with DOX	152
Role of Aldose reductase in the polyol pathway	153
2D and 3D interactions of a-Synthetic Aldose reductase inhibitors and b- Natural flavone Aldose reductase inhibitors	160
	and after nano (total extract, methanol fraction, remaining aqueous fraction), kaempferol rutinoside and rutin on MCF7

List of Tables

	Table	Page No.
1.	Reported Anthraquinones, anthracenes and their derivatives isolated in different <i>Cassia</i> species	5
2.	Phenolic compounds reported in different Cassia species	20
3.	Some miscellaneous compounds reported in different <i>Cassia</i> species	28
4.	Biological activities of genus Cassia	36
5.	UPLC-MS/MS profile of the leaf extract of Cassia glauca	76
6.	Phytochemical screening of Cassia glauca leaves	90
7.	Composition of different prepared tablet (total weight=100mg)	124
8.	Quality control evaluation for different prepared tablets	126
9.	Release of aspirin from different prepared tablets formulae using lactose and cellulose derivatives (Avicel & NCC) as a binder	127
10	The results of the Cytotoxic activity of the different extracts, fractions and isolated compounds before and after nano formulation on HepG-2, MCF-7 and Caco cell lines as determined by MTT assay	142
11.	Docking Scores & interaction modes of Camphor and Carvotanacetone	147
12.	The % of viable, apoptotic and necrotic population cells	149
13.	Microbiological screening for the antimicrobial activity of the different extracts, fractions and isolated compounds before and after nano formulation are against <i>Staphylococcus aureus</i> , <i>E.coli</i> , <i>Pseudomonas aeruginosa</i> and <i>Candida albicans</i> by agar diffusion method	161

Introduction

Since ancient times, several societies have resorted to nature, mainly to plants as medical and health sources. Today, a great percentage of the world population, in particular in developing countries, uses plants for facing primary needs of medical assistance (Tene *et al.*, 2007).

Family Leguminosae is one of the largest families of the flowering plants. It comprises about 650 genera and 18000 species (Hu *et al.*, 2000). The family is divided into three sub-families: Caesalpinioideae, Papilionoideae and Mimosoideae. These sub-families are now treated as independent families due to their large size and named, Caesalpiniaceae, Papilionaceae, and Mimosaceae (Gledhill, 2008). The name Caesalpinioideae is derived from the generic name *Caesalpinia*. The Caesalpinioideae are mainly trees distributed in the moist tropical areas.

Caesalpinacae represents approximately 11% of the known legume flora, with 152 genera and 2800 species (Willis, 1973).

The members of this family are characterized by the legume type of fruits (pods), in which the seeds are housed. They are distributed throughout the world in almost all habitats; however the greatest diversity of the legumes is in the tropical and subtropical areas (Ali *et al.*, 2001).

Phenolic compounds are commonly found in both edible and non-edible plants of family Leguminosae and they have been reported to have multiple biological effects. The flavonoids and other phenolics