

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Combined Antimicrobial Activity of Citrus Honey and Fosfomycin on Multidrug Resistant *Pseudomonas aeruginosa* Isolates

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Medical Microbiology and Dmmunology

By

Amira Saied Mohammed Abdelhady

Master of Medical Microbiology and Immunology Faculty of Medicine- Ain Shams University

Under Supervision of

Prof. Dr. Nebal Medhat Darwish

Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Prof. Dr. Safaa Mohammed Abdel-Rahman

Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Nagwa Mahmoud Ahmed

Lecturer of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2020

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Mebal Medhat Darwish**, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Prof. Dr. Safaa**Mohammed Abdel-Rahman, Professor of Medical

Microbiology and Immunology, Faculty of Medicine, Ain

Shams University, for her sincere efforts, fruitful

encouragement.

I am deeply thankful to **Dr. Magwa Mahmoud**Ahmed, Lecturer of Medical Microbiology and

Immunology, Faculty of Medicine, Ain Shams University,
for her great help, outstanding support, active
participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Amira Saied Mohammed Abdelhady

Tist of Contents

Title	Page No.
List of Tables	4
List of Figures	6
List of Abbreviations	7
Introduction	1 -
Aim of the Work	12
Review of Literature	
■ Pseudomonas aeruginosa	13
• Honey	25
■ Fosfomycin	37
Materials and Methods	47
Results	54
Discussion	69
Summary & Conclusion	80
Recommendations	83
References	84
Arabic Summary	

Tist of Tables

Table No	o. Title	Page No.
Table 1:	Targets and mechanisms of actionavailable anti-pseudomonal antibiotic a	
Table 2:	Antibiotics panel for <i>P. aerug</i> antimicrobial susceptibility testing and diameter zones breakpoints	their
Table 3:	Age of the patients from whom the sawere collected	_
Table 4:	Gender of the patients from whom samples were collected	
Table 5:	Distribution of <i>P. aeruginosa</i> among clasamples	
Table 6:	Frequency of <i>P. aeruginosa</i> in different healthcare settings	
Table 7:	Antibiotic susceptibility pattern of test aeruginosa isolates	
Table 8:	Frequency and percentage of multi- resistance among different <i>P. aerug</i> isolates	ginosa
Table 9:	Frequency and percentage of resantibiotic classes	
Table 10:	Frequency and percentage of <i>exoU</i> among MDR <i>P. aeruginosa</i> isolates	
Table 11:	Distribution of <i>exoU</i> gene +ve <i>P. aerug isolates</i> among health care settings	
Table 12:	The correlation between detection of gene and resistant antibiotic classes	
Table 13:	MIC test results for citrus honey as MDR P. aeruginosa isolates	-

Tist of Tables cont...

Table No	o. Title	Page No.
Table 14:	Comparison between E-test result fosfomycin only and of combined honey and fosfomycin on MDR <i>P. aerug</i> isolates	citrus ginosa
Table 15:	The correlation between detection of gene and combined citrus honey- fosfor E-test	mycin

List of Figures

Fig. No.	Title	Page N	lo.
Figure 1:	Distribution of <i>P. aeruginosa</i> clinical samples	_	56
Figure 2:	Frequency of <i>P. aeruginosa</i> in different healthcare settings		57
Figure 3:	Antibiotic susceptibility pattern aeruginosa isolates		59
Figure 4:	Full susceptibility Panel for <i>P. aeru</i> , isolate showing multidrug resiusing disc diffusion method	stance	59
Figure 5:	Percentage of multidrug resistance a different <i>P. aeruginosa</i> isolates		60
Figure 6:	Frequency and percentage of resantibiotic classes		61
Figure 7:	Gel electrophoresis for <i>exoU</i> detection showing positive results at 3,308 bp) for isolates No. 11, 12, and 80	(band 15, 54	62
Figure 8:	Different MIC results for citrus against MDR <i>P. aeruginosa</i> isolates broth tube dilution method	using	65
Figure 9:	E-test results of fosfomycin alone [a with combination of citrus hone against MDR <i>P. aeruginosa</i> isolate	ey [B]	66
Figure 10:	Comparison between E-test resurfosfomycin only and of combined honey and fosfomycin on MD aeruginosa isolates	citrus P .	67

Tist of Abbreviations

Abb.	Full term
AIDS	Acquired immunodeficiency syndrome
	American type culture collection
°C	
	Centre for Disease Control and Prevention
CF	•
	Clinical laboratory standards institute
	Deoxyribonucleic acid
E. coli	·
<i>ECDC</i>	European Centre for Disease Prevention and Control
ESBL	Extended spectrum beta-lactamases
<i>E-test</i>	-
<i>ETT</i>	Endotracheal tube
EUCAST	European Committee on Antibiotic Susceptibility Testing
ExoU	
	Glucose 6-phosphate
	Hospital acquired infections
ICUs	Intensive care units
<i>IDSA</i>	Infectious Diseases Society of America
MDEPs	Multidrug efflux pumps
<i>MDR</i>	Multidrug resistant
μg	Microgram
MHA	Muller Hinton agar
<i>MIC</i>	Minimal inhibitory concentration
min	-
ml	Milliliter

Tist of Abbreviations cont...

Abb.	Full term
MRSA	Methicillin resistant Staphylococcus aureus
	Pseudomonas aeruginosa
_	Polymerase chain reaction
	Pandrug resistant
	Phosphoenolpyruvate
<i>RNA</i>	
s	Second
S. aureus	Staphylococcus aureus
<i>SD</i>	Standard deviation
sig	Significance
<i>SPSS</i>	Statistical package for Social Science
T3SS	Type III secretion system
UDPMurNAc	Uridine diphosphate N-acetylmuramic acid
<i>UK</i>	United Kingdom
USA	United states of America
UTIs	Urinary tract infections
V/V	Volume per volume
<i>VAP</i>	Ventilator associated pneumonia
VRE	Vancomycin resistance Enterococci
XDR	Extensively drug resistant

Introduction

evelopment and spread of antibiotic resistance is an alarming threat to effective treatment and prevention of bacterial infections in humans and animals. Solving this problem necessitates searching for natural antimicrobial alternatives. Currently, more researchers are turning their attention to traditional medicines as a potential source of antimicrobial agents (Wasfi et al., 2016).

The medicinal effects of honey date back to the days of Aristotle (384–322 BC) for the treatment of sore eyes and wound infections. This reputation has continued up to the present day, leading to the emergence of a relatively new branch of alternative medicine, called "apitherapy", which focuses on medical applications of honey and other bee products. Different types of honey have been used in many countries as an alternative to pharmaceutical products for treating infected burn wounds. This is attributed to the effectiveness of these honeys in inhibiting or killing different types of bacteria (Vandamme et al., 2013 and Almasaudi et al., 2017).

Pseudomonas aeruginosa is a common opportunistic microorganism that causes various infections in human beings. It is often associated with different types of health care associated infections. Because it possesses a battery of virulence genes, *Pseudomonas* aeruginosa can cause both acute and chronic diseases. Pseudomonas aeruginosa antimicrobial resistance is due to its

potential ability to acquire new antimicrobial resistance genes and is enhanced by its ability to form biofilm (Camplin and Maddocks, 2014 and Hassuna, 2016).

Type III secretion system has been identified as a major pathogenesis of virulence determinant in the Pseudomonas aeruginosa infections. Type III secretion system allows the delivery of various effector toxins as exoenzyme S, exoenzyme U, exoenzyme Y, and exoenzyme T into host cells, which can facilitate the pathogen cellular invasion. Various studies suggest that exoenzyme U-producing strains are associated with poor outcomes, resistance to many antibiotics and high mortality rates (Hassuna, 2016).

As the use of novel antimicrobial agents became limited, the re-evaluation of older antibiotic agents seems to be an appealing option. Fosfomycin is an old and decommissioned antibiotic that inhibits the initial steps of cell wall synthesis and was previously used mainly as oral treatment for uncomplicated urinary tract infections. It currently attracts clinicians' interest worldwide due to its reported activity against pathogens with advanced resistance and treatment of difficult infections (*Matthew et al.*, 2016).

The use of antibiotics exerts selection pressures that favor the emergence of mutants with antibiotic resistance determinants. Experiments with honey indicate that bacteria failed to manifest resistance to honey in the laboratory. It can

be postulated that combinations of antibiotic and honey would be less likely to encourage the emergence of multidrug resistant bacteria than antibiotics alone (Jenkins and Cooper, 2012).

Aim of the Work

The aim of the present study was to evaluate the synergistic antibacterial effect of citrus honey and fosfomycin on multidrug resistant *Pseudomonas aeruginosa*.