Measurement of Cerebro-Placental Doppler Ratio and Amniotic Fluid Index as a Predictor of Perinatal Outcome in Prolonged Pregnancy

Thesis

Submitted for Fulfillment of Master Degree in **Obstetric and Gynecology**

By

Omer Nasser Abbas Ali

M.B.B.Ch 2012, Assiut University Resident of Obstetrics and Gynecology, Police Academy Hospital

Under Supervision of

Dr. Noha Hamed Abdelhamid Rabei

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Mohamed Osama Taha

Lecturer of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Mohamed Kamal Etman

Fellow of Obst. and Gyn at Special Care Unit of Fetus Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Dr. Moha Hamed Abdelhamid**Rabei, Professor of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Mohamed Osama Taha**, Lecturer of Obstetrics and Gynecology, Faculty of

Medicine, Ain Shams University, for his sincere efforts,

fruitful encouragement.

I am deeply thankful to **Dr. Mohamed Kamal Etman**, Fellow of Obst. and Gyn at Special Care Unit of Fetus, Faculty of Medicine, Ain Shams University, for his great help, outstanding support, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Omer Nasser Abbas Ali

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Abstract	9
Protocol	
Introduction	1 -
Aim of the Work	14
Review of Literature	
■ Epidemiology of Post Term Pregnancy	15
 Pathophysiologic Changes in Post Term Pregnand 	cy23
• Complications of Post Term Pregnancy	29
■ Management of Post Term Pregnancy	40
Doppler Ultrasound	45
Patients and Methods	66
Results	75
Discussion	86
Conclusion and Recommendations	98
Summary	100
References	103
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table 1:	Fluid movement into and out amniotic cavity	
Table 2:	Maternal characteristics of both group	ps75
Table 3:	Comparison between both groups as Doppler indices	_
Table 4:	Comparison between both groups as fetal outcome	_
Table 5:	Relation between adverse fetal out and mode of delivery	
Table 6:	Relation between Doppler indices ar versus perinatal outcome	
Table 7:	Relation between Doppler indices are with mode of delivery	
Table 8:	Relation between Doppler indice meconium stained liquor	
Table 9:	Correlation between Doppler indice and fetal outcome	
Table 10:	Relation between Doppler indices and	l AFI 83
Table 11:	Best cut off, sensitivity, specificity, NPV of Doppler indices and A prediction of adverse perinatal outcomes.	FI in

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Fetal breathing and umbilical Doppler waveform	
Figure 2:	Normal waveform of umbilical arte	ery51
Figure 3:	The pourcelot ratio (resistance in the umbilical artery in normal pre-	
Figure 4:	Antenatal Doppler: reversed diastolic flow	
Figure 5:	Umbilical Artery Doppler	53
Figure 6:	Anatomic location of the basic c arteries as seen by ultrasound	
Figure 7:	Normal range (+2 standard deviate the pulsatility index in the fetal cerebral (PI MCA), in normal s between 27 and 41 weeks of gestate	middle ubjects
Figure 8:	A, Normal middle cerebral Doppler flow waveform. B, Ab middle cerebral artery Doppler flo increased diastolic flow (brain sp SMFM	normal w with paring).
Figure 9:	Measurements of the largest very pocket of fluid in each of four quantification of the uterus	adrants
Figure 10:	Three consecutive MCA wave form which Middle cerebral artery pul index (MCA-PI) is measured	satility
Figure 11:	Three consecutive UA wave form which Umbilical artery pulsatility (UA-PI) is measured	y index

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 12:	Comparison between both groregards to parity	-
Figure 13:	Comparison between both groregard Doppler indices	-
Figure 14:	Relation between Doppler indic AFI versus perinatal outcome	
Figure 15:	Relation between Doppler indicated AFI with mode of delivery	
Figure 16:	Relation between Doppler indic M.S.L.	

Tist of Abbreviations

Abb.	Full term
ΔFI	Amniotic fluid index
	Amniotic fluid volume
	Biophysical profile
	Cerebro placental ratio
	Caesarean Section
	Continous wave Doppler
	Expected date of delivery
	Frequency received
	Frequency transmitted
	Flow velocity waveforms
	Last menstrual period
	Meconium aspiration syndrome
	Miecontum aspiration synarome Middle cerebralartery
	Minimum diastolic velocity
	-
	Maximum peak systolic velocity
	Meconium stained liquor
	Neonatal Intensive Care Unit
PI	
	Pulse repetition frequency
	Peak systolic velocity
	Pulsed wave Doppler
	Resistance brained/resistance placenta
<i>RI</i>	
	Systolic / diastolic ratio
	Small for gestational age
<i>UA</i>	Umbilical artery

Abstract

Objective: To study the role of Doppler velocimetry of the umbilical and middle cerebral arteries, represented by the cerebroplacental ratio, and amniotic fluid volume in the prediction of adverse fetal outcome in postterm pregnancies. Patients and Methods: Design. A prospective case control study. Setting. Ain Shams University Teaching Hospital for Obstetrics and Gynecology, Egypt. Subjects: 50 pregnant patients divided into two groups; Group1: This group included 25 pregnant ladies with gestational age of 41 weeks attending the casuality department in labour or in prodroma of labor. Group 2: This group included 25 pregnant ladies with gestational age of 41 weeks not in labor and reaching the hospital for ANC. who were selected for termination based on the biophysical profile and poor Doppler indices or CTG changes. Interventions: All patients were submitted to antenatal fetal surveillance tests including modified biophysical profile (MBPP) which consists of the non-stress test (NST), amniotic fluid index (AFI), and color Doppler velocimetry of fetoplacental and fetal vessels including MCA PI, UA PI, and CPR. Main outcome measures. The accuracy of cerebroplacental ratios (the middle cerebral artery PI divided by the umbilical artery PI) and amniotic fluid volume as a means of predicting intrauterine fetal distress and adverse perinatal outcome in post-term pregnancies. Results: Cerebroplacental ratio show highest sensitivity (95%) in comparison with other parameters, so it is a good test to reassure the obstetricians of the fetal well being. Prominent changes in AFI (i.e. <50% increase or decrease) is not associated with adverse perinatal outcome irrespective of the rate of change provided that the final value remains >5.0 cm. A significant association with FHR decelerations and presence of meconium is proved to exist when AFI is <5.0 cm. Conclusion: The addition of cerebral/umbilical ratios to antenatal surveillance protocols is expected to improve the perinatal outcome. It should be tried in the various high risk pregnancies whenever uteroplacental insufficiency is suspected.

Keywords: Doppler ultrasound; Post-term; Pregnancy; Perinatal outcome

Introduction

The terms post-term, prolonged, postdates and post mature are often loosely used interchangeably to signify pregnancies that have exceeded a duration considered to be the upper limit of normal (*Cunningham et al.*, 2017).

The standard internationally recommended definition of prolonged pregnancy accepted by both the World Health Organization (WHO) and the International Federation of Gynecology and Obstetrics (FIGO) is 42 completed weeks (294 days) or more from the first day of the last menstrual period (LMP), assuming valid dates and a regular 28 day cycle (*Luckas et al., 2004*). This definition was endorsed by the American College of Obstetricians and Gynecologists (1997) (*Cunningham et al., 2015*).

Postdate pregnancies account about 5 - 10 % of the deliveries and are known to be associated with increased risk for perinatal complications (*Lam et al.*, 2005a).

Incidence of subsequent post term birth increases from 10 to 27% if first birth was post term up to 39% if there had been two previous successive post term deliveries (*Bakketeig et al.*, 2000).

The mechanism of fetal complications associated with postdate pregnancy has attributed to progressive placental

insufficiency, particularly in the presence of decreased amniotic fluid (Lam et al., 2005a).

Placental dysfunction is considered he the to pathophysiologic event leading to intrapartum asphyxia and meconium aspiration. However, the principal mechanism leading to intrapartum fetal distress is umbilical cord compression due to oligohydramnios (Dasari et al., 2007).

Prepartum meconium aspiration is the potential danger in postdate pregnancy. Meconium staining of amniotic fluid serves as a primary ingredient in the lower APGAR scores and higher incidence of meconium aspiration syndrome and fetal distress encountered in the postdate group (Boisselier et al., 2001).

Postdate infants, particularly those with macrosomia and post maturity, are at increased risk for hypoglycemia because post mature infants has decreased storage of glycogen and subcutaneous fat and also possibly an increased metabolic rate. It is important that postdate infants with macrosomia or signs of post maturity have glucose evaluations especially during the first 12 hours (Sims et al., 2001).

Postdate pregnancies are also associated with maternal risks namely discomfort, anxiety and increased cesarean delivery due to cephalopelvic disproportion. Also, there is a risk for cervical tears due to the fetal macrosomia (Olesen et al., 2003).

Ultrasound examination plays a very important role in the diagnosis of postdate pregnancies which is used for assessment of both gestational age and amniotic fluid volume. The amniotic fluid index (AFI) and biophysical profile (BPP) have both been used to assess fetal well-being (Magann et al., 2004).

Doppler information may play a role in the surveillance of uncomplicated prolonged pregnancies. Data from reliable, well- constructed normal curves during this gestational age are lacking (Palacio et al., 2004).

A few studies had looked into the Doppler blood flow changes in postdated pregnancies and came up with varying results. Some demonstrated redistribution of blood flow in the fetal cerebral circulation in postdated pregnancies with adverse perinatal outcome, and such brain- sparing phenomenon is thought to result in oligohydramnios (Selam et al., 2000).

However, others reported insignificant difference in Doppler indices for postdated pregnancies with and without oligohydramnios (Lam et al., 2005a).

Evaluation of the cerebral blood flow in the fetus has become an integrated part of the assessment of high-risk pregnancies. The middle cerebral artery (MCA) has been studied extensively, and its Doppler recordings are incorporated regularly into the management of fetuses at risk of developing placental compromise and fetal anemia (Ebbing et al., 2007).

Combining the Doppler waveform analysis of the middle cerebral artery (MCA) with that of the umbilical artery (UA) by a common cerebro-placental ratio, i.e. the ratio of their pulsatility indices has been suggested as a useful clinical simplification (Ebbing et al., 2007).

A low cerebroplacental ratio reflects redistribution of the cardiac output to the cerebral circulation and has been shown to improve accuracy in predicting adverse outcome compared with MCA or UA Doppler alone (Vergani et al., 2005).

AIM OF THE WORK

The aim of this study is to determine the role of Doppler velocimetry of the umbilical and middle cerebral arteries, represented by the cerebroplacental ratio, and amniotic fluid volume in the prediction of adverse fetal outcome in post-term pregnancies.

Chapter 1

EPIDEMIOLOGY OF POST TERM PREGNANCY

Definition

The expression of post-term, postdate and post mature are often loosely used interchangeably to signify pregnancies that have exceeded a duration considered to be the upper limit of normal (*Cunningham et al.*, 2017).

The standard internationally recommended definition of prolonged pregnancy accepted by both the World Health Organization (WHO) and the International Federation of Gynecology and Obstetrics (FIGO) is 42 completed weeks (294 days) or more from the first day of the last menstrual period (LMP), assuming valid dates and a regular 28 day cycle (*Luckas et al., 2004*). This definition was endorsed by the American College of Obstetricians and Gynecologists (1997) (*Cunningham et al., 2015*).

Epidemiological studies have shown that after 41 weeks, the rate of fetal, maternal and neonatal complications increase. As such, management of this condition remains a matter of concern for most clinicians. Many national scientific societies have produced guidelines that are likely to be influenced by the characteristics of the local health systems (*Giampaolo et al.*, 2010).