SOME PHYSIOLOGICAL STUDIES ON STEVIA

(Stevia rebaudiana)

By

EMAN FAROUK ABU EL-LEIL MOSTAFA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2001. M.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., Egypt, 2008.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences

(Plant Physiology)

Department of Agricultural Botany
Faculty of Agriculture
Cairo University
EGYPT

2019

Format Reviewer

Vice-Dean of Graduate Student

APPROVAL SHEET

SOME PHYSIOLOGICAL STUDIES ON STEVIA

(Stevia rebaudiana)

Ph.D. Thesis In Agric. Sci. Agricultural Botany Department, (Plant Physiology)

By

EMAN FAROUK ABU EL-LEEL MOSTAFA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2001. M.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., Egypt, 2008.

APPROVAL COMMITTEE

Dr. IBRAHIM SEIF EL-DIN IBRAHIM
Professor of Plant Physiology, Fac. Agric., Ain Shames University.
Dr. MOHAMED RAMADAN ABOULELLA
Professor of Plant Physiology, Fac. Agric., Cairo University.
Dr. ABEER ABD EL- RAHMAN MAHMOUD
Associate Professor of Plant Physiology, Fac. Agric., Cairo University.
Dr. MOHAMED K. KHALIL
Professor of Plant Physiology, Fac. Agric., Cairo University.

Date: 27 / 8 / 2019

SUPERVISION SHEET

SOME PHYSIOLOGICAL STUDIES ON STEVIA

(Stevia rebaudiana)

Ph.D. Thesis
In
Agric. Sci. (Plant Physiology)

By

EMAN FAROUK ABU EL-LEEL MOSTAFA

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., Egypt, 2001. M.Sc. Agric. Sci. (Ornamental Horticulture), Fac. Agric., Cairo Univ., Egypt, 2008.

SUPERVISION COMMITTEE

Dr. Mohamed K. Khalil Professor of Plant Physiology, Fac. Agric., Cairo University.

Dr. Abeer Abd El- Rahman Mahmoud Associate Professor of Plant Physiology, Fac. Agric., Cairo University.

Dr. El-Mewafy Abdou El-Mewafy El-Ghadban
Professor of Medicinal and Aromatic Plants, Hort. Res. Inst., Agric. Res. Center, Giza.

Name of Candidate: Eman Faoruk Abu-El-Leil Mostafa Degree: Ph.D.

Title of Thesis: Some physiological studies ^{on} Stevia (*Stevia rebaudiana*)

Supervisors: Prof. Dr. Mohamed K. Khalil,

Ass. Prof. Abeer Mahmoud Abd El- Rahman,

Prof. Dr. El-Mewafy Abdou El-Mewafy El-Ghadban.

Department: Agricultural Botany **Branch:** Plant Physiology **Approval:** 27 / 8 / 2019

ABSTRACT

An investigation was consummated at the Agricultural Botany, Plant Physiology Section, Faculty of Agriculture, Cairo University. Plant tissue culture experiments were carried out in Plant Physiology Research Laboratory, Agric. Bot. Dept., Fac. Agric., Cairo Univ., Giza Egypt. Acclimatization experiment was carried out in the GreenHouse of Olive Dept., Horticultural Institute, Agric. Res. Cent., Giza, Egypt. Anatomical studies were carried out in Research Park, Fac. Agric., Cairo Univ. Giza Egypt.

The current project was conducted during 2014 - 2018 to study the effect of Flurprimidol (Flur.), Paclobutrazol (PBZ) and thidiazuron (TDZ) on plantlets growth and acclimatization of Stevia rebaudiana Spanti and China-1 cultiv. Stem nodal segments containing axillary buds were used as an explant and cultured on MS medium containing 3% (w/v) sucrose and 0.8% (w/v) agar supplemented with various concentrations of Flur., PBZ and TDZ. In Spanti cultivar maximum number of branches (6.4) and (6.52) were obtained in MS medium supplemented with 0.12 ppm Flur and 0.2 ppm TDZ, respectively with an average of 56.4 and 36.66 leaves / plantlet, having an average shoot length of 4.18 and 3.22 cm, respectively. The best in vitro root induction (100%) was achieved on MS medium with 0.16 ppm Flur, with an average of 10 roots /plantlet and root length of 4.82 cm (Spanti cultivar). Furthermore, in China-1 cultivar MS medium supplemented with 0.16ppm Flur.induced the best morphological characteristics. As a result of anatomy, all studied growth regulators significantly enhanced the anatomical characters of stevia vars. leaf and stem. Flur.at 0.16mg\l surpassed, for instance, midvein and lamina thickness, length and width of leaf vascular bundle as well as stem diameter, xylem and phloem thickness. The rooted plantlets from explant planted on (MS) medium supplemented with 0.16ppm Flur. were successfully established in soil and grown to maturity at the survival rate of 100% in the greenhouse in (Spanti) and (China-1) cultivar Pot experiment was conducted in greenhouse on stevia plant to study the effect of both NH₄NO₃ and KNO₃ under the treatments of BA, Kin, and TDZ. NH₄NO₃ excelled KNO₃ fertilization on all growth characters except plant height. BA treatment tended to increase total fresh weight/ plant as compared to those of Kin and TDZ in some cases.

Molecular studies showed that Spanti and China-1 vars. are closely related with some slight differences. The protein bands which present in the treatments and absent in control might be responsible of increase the total chlorophyll a, chlorophyll b and total carotenoid as expressions of hormone affects, whereas Flur. and TDZ produced more greener plantlets in both vars. compared to PBZ (Yellowish plant). TDZ treatments induced the most of unique bands which may be explain the greatest number of branches and the highest percentage of callus which produced by using TDZ. The results indicated that treatments were successful in inducing further characterized for morphological and chemical composition traits.

Leaf chemical composition of N, P, K and protein as well as chlorophyll% were determined during 2017 and 2018 seasons. K concentration was higher under potassium nitrate fertilization when compared to ammonium nitrate fertilization. Potassium nitrate addition resulted in slight increase in chlorophyll a & b and carotenoids over ammonium nitrate addition.

Key words: Asteraceae, *Stevia rebaudiana*, Stevia, Tissue culture, Flurprimidol, PBZ, TDZ, Acclimatization, Ammonium nitrate, Potassium nitrate, Electrophoresis.

DEDICATION

I dedicate this work to whom my heartfelt thanks; to my late father's soul, my mother, my sisters and my brother for all the support they lovely offered to me along the period of my post-graduat studies and preparation of thesis desertation.

ACKNOWLEDGEMENT

Thanks and all praise be to Allah. I thank God who expanded my heart easied for me dask.

I would like to express my gratitude to Dr. Mohamed K, Khalil professor of Plant Physiology, Faculty of Agriculture, Cairo University for his supervision and valuble help during the preparation of this investigation, thanks also extended to Dr. El-Mewafy Abdou El-Mewafy El-Ghadban professor of Medicinal and Aromatic Plants Hortculture Reasearch, Institute for his valuable supervision. Deep appreciation is also extended to Dr. Abeer Abd El-Rahman Mahmoud Associate professor of Plant Physiology, Faculty of Agriculture, Cairo University for her supervision and valuble help during the preparation of this investigation, constructive criticism and continuous help through out the course of this study.

Deep appreciation is also extended to everyone at Plant Physiology Research Laboratory, Plant Physiology Section, Agric. Bot. Dept., Fac. Agric., Cairo Univ., Giza Egypt. And Horticultural Institute, Agric. Res. Cent., Giza Egypt. providing all effort need during the preparing of this investigation.

God bless them all

ABBREVIATIONS

BA : benzyl adenine

Bp : Base pair
Car. : Carotenoids
Chl. : Chlorophyll
Chl.a : Chlorophyll a
Chl.b : Chlorophyll b

DAS : Days After Sowing

Flur. : Flurprimidol FW : Fresh weight

HPLC : High Performance Liquid Chromatography

ISSR : Inter-Simple Sequence Repeat

KDa : Kilodalton Kin. : Kinetin

KNO₃ : Potassium nitrate

L : liter

mg : milligram Min : minute

MS media : Murashige and Skoog NH₄NO₃ : Ammonium nitrate

PBZ. : Paclobutrazol

PPO : Polyphenol oxidases

PX : Peroxidase

TEMED : Tetramethylethylenediamine

TDZ : Thidiazuran

TLC : Thin Layer Chromatography

TRT : Treatment

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1. Morphological studies	.
a. Stevia seed germination	
b. Establishment and multiplication stages	
(1) Surface sterilization	
(2) Plant regeneration (The influence of plant grow regulators)	
(3) The effect of growth retardants and TDZ morphological characteristics	on
(4) Rooting	
c. Effect of plant growth retardants and TDZ on anatom	ıy
d. Effect of plant growth retardants and TDZ acclimatizatione. Effect of fertilization (nitrogen source) and BA, Kin a TDZ on morphological characteristics in pot experiment	 and
2. Chemical composition	
a. Effect of plant growth retardants and TDZ on prote profile in plantlets	
b. Effect of plant growth retardants and TDZ isoenzyme in plantlets	
c. Effect of plant growth retardants and TDZ chlorophyll in plantlets	
d. Effect of fertilization (nitrogen source) and BA, k and TDZ on chlorophyll	Kin
e. Effect of fertilization (nitrogen source) and BA, Kin a TDZ on (NPK and total protein) in pot experiment	

3. Molecular sutdies	
MATERIALS AND METHODS	
1. Morphological studies	
a. Seed germination	
b. Plant tissue culture studies	
(1) Surface-sterilization	
(2) Establishment and multiplication stages	
(3) Effect of plant growth retardants and TDZ	
(4) Anatomical study	
c. Acclimatization	
d. Pot experiment	
2. Chemical composition	
a. Leaf protein Electrophoresis	
b. Isozymes electrophoresis (SDS- free)	
(1) Peroxidase (PX)	
(2) Polyphenol Oxidase (PPO)	
c. Plant pigments	
d. Mineral concentration(1) Digestion for total nitrogen %	
(2) Digestion for total phosphorus and potassium % (dry	
ashing)	
(a) Phosphorus %	
(b) Potassium %	
3. Molecular studies	

a. DNA isolation procedure
b. Polymerase chain reaction (PCR)
. Statistical analysis
RESULTS AND DISCUSSION
. Morphological studies
a. Steiva seed germination
b. plant tissue culture studies
(1) Surface sterilization
 (2) Establishment and multiplication effects of some growth regulators on morphological criteria
(2) The stem
d. Effects of growth retardants and TDZ in stevia on acclimatization through plant produced from tissue culture
e. Effects of both nitrogen sources and some growth regulators on plant growth characters through plant produced from pot experiment
. Chemical composition
a. Effects of growth retardants and TDZ on biochemical identification in plant tissue culture experiment (1) SDS- PAGE protein banding patterns of stevia leaves
(2) Isozymes banding patterns

(a) Peroxidase oxidase banding patterns
(b) Polyphonyl oxidase banding patterns
b. Effects of growth retardants and TDZ on stevia leaves plant pigments concentration on plants produced from tissue culture
c. Effects of both nitrogen sources and some growth regulators on stevia leaf pigments in plants from pot experment
d. Effects of both nitrogen sources and some growth regulators on chemical composition (NPK and total protein)
3. Molecular studies (linkage Map between two stevia
a. Randomly Amplified Polymorphic DNA (RAPD) markers
b. Inter Simple Sequence Repeats (ISSRs) markers
CONCLUSION
SUMMARY
REFERENCES
ARABICSUMMARY

LIST OF TABLES

No.	Title	Page
1.	Some physical and chemical properties of the experimental soils	61
2.	The chemical analysis of the used irrigation water	62
3.	Composition of resolving and stacking gels	65
4.	List of the primer names and their nucleotide sequences of RAPD and ISSR procedures used in the study	76
5.	. Effect of surface sterilization of stevia (<i>Stevia rebaudiana</i>) stem segments with different concentrations of sodium hypochlorite on survival, and some growth characters after six weeks	80
6.	Effect of different growth regulators treatment on growth characters in stevia (<i>Stevia rebaudiana</i> , Spanti cultivar) plant cultured on MS medium for six week	83
7.	Effect of different growth regulators treatment on growth characters in stevia (<i>Stevia rebaudiana</i> , China-1 cultivar) plant cultured on MS medium for six week	84
8.	Effects of Flur., PBZ and TDZ at different concentrations on average of data for morphological characteristics of <i>stevia rebaudiana</i> Spanti cultivar at first subculture	89
9.	Effects of Flur., PBZ and TDZ at different concentrations on average of data for morphological characteristics of <i>stevia</i>	90
10.	rebaudiana China-1 cultivar at first subculture Effects of Flur., PBZ and TDZ at different concentrations on average of data for morphological characteristics under study of	92
11.	Stevia rebaudiana Spanti cultivar at second subculture Effects of Flur., PBZ and TDZ at different concentrations on average of data for morphological characteristics under study of	-
12.	Stevia rebaudiana China-1 cultivar at second subculture Effects of Flur., PBZ and TDZ at different concentrations on	93
	average of data for morphological characteristics under study of <i>Stevia rebaudiana</i> plant Spanti cultivar at third subculture	95
13.	Effects of Flur., PBZ and TDZ at different concentrations on	96

	average of data for morphological characteristics under study of
	Stevia rebaudiana plant China-1 cultivar at third subculture
14.	Microscopical measurements (μ) and counts of certain
	anatomical features in transverse sections through the Leaf of
	stevia plant treated with Flur. (0.16 ppm), TDZ (0.2 ppm) and
	PBZ (1.0 ppm) during 2016-2017
15.	Microscopical measurements (µ) and counts of certain
	anatomical features in transverse sections through the stem of
	stevia plant treated Flur. (0.16 ppm), TDZ (0.2 ppm) and PBZ
	(1.0 ppm) during 2016-2017
16.	Survival percentage, plant height and no. of leaves/plant during
	acclimatization as affected by Flur., PBZ and TDZ at different
	concentrations of Stevia rebaudiana spanti cultivar
17.	Survival percentage, plant height and no. of leaves/plant during
	acclimatization as affected by Flur., PBZ and TDZ at different
	concentrations of Stevia rebaudiana China-1 cultivar
18.	Effect of nitrogen sources and some plant growth regulators on
	morphological characteristics of Stevia rebaudiana Spanti
	cultivar plant at the first cut in the first season (2017)
19.	Effect of nitrogen sources and some plant growth regulators on
	morphological characteristics of Stevia rebaudiana Spanti
	cultivar plant at the first cut in the second season (2018)
20.	Effect of nitrogen sources and some plant growth regulators on
	morphological characteristics of Stevia rebaudiana China-1
	cultivar plant at the first cut in the first season (2017)
21.	Effect of nitrogen sources and some plant growth regulators on
	morphological characteristics of Stevia rebaudiana China-1
	cultivar plant at the first cut in the second season (2018)
22.	Effect of nitrogen sources and some plant growth regulators on
	morphological characteristics of stevia rebaudiana Spanti
	cultivar plant at second cut in the first season (2017)
23.	Effect of nitrogen sources and some plant growth regulator on
	morphological characteristics of Stevia rebaudiana Spanti
_	cultivar plant at the second cut in the second season (2018)
24.	Effect of nitrogen sources and some plant growth regulators on
	morphological characteristics of Stevia rebaudiana China-1
	cultivar plant at second cut in the first season (2017)
25.	Effect of nitrogen sources and some plant growth regulator on
	morphological characteristics of <i>Stevia rebaudiana</i> China-1

	cultivar plant at the second cut in the second season (2018)
26.	Effect of flur. and TDZ concentrations (ppm) on SDS-protein
	banding patterns of proteins leaf (KDa) for stevia Spanti cultivar
	as the presence (1) and absence (0) of bands
27.	Effect of flur. and TDZ concentrations (ppm) on SDS-protein
	banding patterns of proteins leaf (KDa) for stevia China-1
	cultivar as the presence (1) and absence (0) of bands
28.	Effect of flur. and TDZ concentrations (ppm) on leaf peroxidase
	isozymes of stevia cultivar (Spanti) as the presence (1) and
	absence (0) of bands
29.	Effect of flur. and TDZ concentrations (ppm) on leaf peroxidase
	isozymes of stevia cultivar (China-1) as the presence (1) and
	absence (0) of bands
30.	Effect of flur. and TDZ (ppm) on leaf polyphenol oxidase
	isozymes of stevia cultivar (Spanti) as the presence (1) and
	absence (0) of bands
31.	Effect of flur. and TDZ (ppm) on leaf polyphenol oxidase
	isozymes of stevia cultivar (China-1) as the presence (1) and
	absence (0) of bands
32.	Effect of some growth regulators on stevia (Stevia rebaudiana
	Spanti cultivar) on leaf pigments concentration at the third
	subculture
33.	Effect of some growth regulators on stevia (Stevia rebaudiana
	China-1 cultivar) leaf pigments concentration at the third
	subculture
34.	Effect of chemical fertilization and some plant growth
	regulators on plant pigments concentration under study of
	Stevia rebaudiana cultivar Spanti plant at the second cut in the
	second season
35.	Effect of chemical fertilization and some plant growth
	regulators on plant pigments under study of Stevia rebaudiana
	cultivar China-1 plant at the second cut in the second season
36.	Effect of chemical fertilization and some plant growth
	regulators on nitrogen, phosphorus, potassium (percentages) and
	protein under study of Stevia rebaudiana cultivar Spanti plant at
	the second cut in the second season
37.	Effect of chemical fertilization and some plant growth
	regulators nitrogen, phosphorus, potassium (percentages) and
	protein under study of Stevia rehaudiana cultivar China-1 plant

	at the second cut in the second season	
•	Data matrix illustrating the presence or absence of RAPD produced by primer OP-A02 in the two varieties of	Stevia
	rebaudiana	
•	Data matrix illustrating the presence or absence of RAPD produced by primer OP-A09 in the two varieties of	
	rebaudiana	
	. Data matrix illustrating the presence or absence of I	RAPD
	bands produced by primer OP-B11 in the two varieties of	
	rebaudiana	
	Data matrix illustrating the presence or absence of RAPD	bands
	produced by primer OP-C04 in the two varieties of rebaudiana	
	Data matrix illustrating the presence or absence of RAPD	
	produced by primer OP-D01 in the two varieties of	
	rebaudiana	
	Data matrix illustrating the presence or absence of RAPD	
	produced by primer OP-D09 in the two varieties of	
	rebaudiana	
	Data matrix illustrating the presence or absence of ISSR	bands
	produced by primer 44B in the two varieties of	Stevia
	rebaudiana	
	Data matrix illustrating the presence or absence of ISSR	
	produced by primer 98B in the two varieties of	
	rebaudiana	
	Data matrix illustrating the presence or absence of ISSR	
	produced by primer HB-10 in the two varieties of	
	rebaudiana	
	Data matrix illustrating the presence or absence of ISSR	
	produced by primer HB-12 in the two varieties of	Stevic
	rebaudiana	
	Species-specific RAPD and ISSR markers for	
	rebaudiana species genotypes.	