

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Value of Peripheral Blood Eosinophil Markers to Predict Severity of Asthma

Thesis

Partial Fulfillment of Master Degree
in Chest Diseases

Faten Ahmed Mohamed Abdallah

M.B.B.Ch., Ain Shams University

Under Supervision of

Prof./ Gehan Mohamed El Assal

Professor of Chest Diseases
Faculty of Medicine, Ain Shams University

Dr./ Haitham Salah El Din Mohamed

Lecturer of Chest Diseases
Faculty of Medicine, Ain Shams University

Faculty of medicine
Ain Shams University
2020

First, and foremost, I feel always indebted to Allah, the Most Kind and the Most Merciful.

Thanks to Allah who lightened my path to become a humble student for a noble profession and granted me the ability to accomplish this work.

Words can never express my hearty thanks and indebtedness to **Prof. Dr./ Gehan Mohamed El Assal,** Professor of Chest Diseases, Faculty of Medicine, Ain Shams University, for her great support and continuous encouragement and guidance to complete this work. It was a great honor to work under her guidance and supervision.

My deepest appreciation and grateful thanks to **Dr./**Haitham Salah El Din Mohamed, Lecturer of Chest Diseases, Faculty of Medicine, Ain Shams University, for his meticulous supervision, continuous guidance, and constructive criticism. His patience and objectivity in tolerating the revision of this study are very much appreciated.

Last but not least, I can't forget to thank all members of my Family, specially my Parents and my husband for their help and support in every step of my life.

Example 12 Taten Ahmed Mohamed Abdallah

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Study	4
Review of Literature	
Asthma Definition	5
Peripheral Blood Eosinophilia	58
Patients and Methods	73
Results	77
Discussion	87
Summary	95
Recommendation	99
References	100
Arabic Summary	

List of Abbreviations

Abbrev. Full-term **BMI** : Body mass index **CBC** : Complete blood count **CFC** : Chlorofluorocarbon propellant **COPD** : Chronic obstructive pulmonary disease **CT** : Computed tomography **DPI** : Dry powder inhaler : Fractional concentration of exhaled nitric oxide **FENO** FEV I : Expiratory volume in one second **FVC** : Forced vital capacity : Gastroesophageal reflux disease **GERD** : Hydrofluoroalkane propellant **HFA ICS** : Inhaled corticosteroids IL : Interleukin LABA : Long-acting beta2-agonist LTRA : Leukotriene receptor antagonists **MRI** : Magnetic resonance imaging OCS : Oral corticosteroids PEF : Peak expiratory flow : Pressurised metered-dose inhaler pMDI **SABA** : Short-acting beta2-agonist SD : Standard deviation

: Statistical package for social science

: Specific immunoglobulin E

: T-helper

: Eosinophils

sIgE

SPSS

Th

 \mathbf{E}

List of Tables

Table No	. Title Pag	ge No.
Table (1):	GINA 2018 classification of asthma severity	
Table (2):	Demography of patients;	77
Table (3):	Co morbidity of patients;	79
Table (4):	Spirometric reading and asthma severity grades of patients.	
Table (5):	Correlation between Eosinophil and asthma severity grades	
Table (6):	Correlation between E and spirometery reading	
Table (7):	Impact of inhaled steroid alone on eosinophil level	
Table (8):	Impact of combined oral and inhaled steroid use on eosinophil level	
Table (9):	CBC before steroid therapy	84
Table (10):	CBC reading after oral and inhaled steroid therapy	
Table (11):	Comparison between impact of inhaled corticosteroid alone and combined inhaled + oral on eosinophil level	

List of Figures

Figure I	O. Title	Page No.
Figure (1):	The control-based asthma manage cycle	
Figure (2):	Low, medium and high daily dose inhaled corticosteroids	
Figure (3):	Stepwise approach to control sympand minimize future risk	
Figure (4):	Two different pathways lead to eosing airway inflammation in asthma	-
Figure (5):	Sex distribution in studied patients	78
Figure (6):	Smoking status of the studied patient	ts78
Figure (7):	Asthma severity grades	80
Figure (8):	Correlation between asthma severity eosinophil level	
Figure (9):	Bar chart between inhaled and inhaled oral according to eosinophil	

Introduction

sthma is an inflammatory disorder of the airways and one of the most common chronic diseases in industrialized countries. Despite the availability of a myriad of oral and inhaled asthma medications, the prevalence of asthma and its associated mortality continue to increase. Asthma is also associated with significant morbidity, often affecting the Patient's normal daily activities, disturbing normal sleep patterns and potentially reducing quality of life (Korenblat et al., 2018).

Patients with poorly controlled asthma present a medical challenge that remains far too prevalent, and this may be partially related to suboptimal treatment strategies and poor patient compliance with drug therapy. Current treatment guidelines. With a few exceptions, such as parenterally administered aminophylline and salbutamol (albuterol), most drugs used in the treatment of patients with asthma are administered orally or by inhalation. This article reviews the positive and negative aspects of oral and inhaled asthma medications, including issues relating to patient compliance, pharmacokinetic properties, clinical efficacy, tolerability and the use of these medications in combination (*Hall et al.*, 2015).

Although asthma cannot be cured, the severity of the disease can be reduced with long term anti-inflammatory therapy. Compliance with long term therapeutic regimens is difficult and, as indicated in another paper in this supplement, is affected by a number of factors, including the frequency and ease of drug administration as well as adverse events. Obviously, patient compliance with therapy for any chronic disease such as diabetes mellitus or hypertension is important; however, compliance with asthma therapy has the added dimension that treatment frequently includes the use of inhalers, which are relatively complicated devices and which many patients (especially children and the elderly) find difficult to use (*Normansell et al., 2016*).

Indeed, it has been shown that the great majority of elderly patients cannot use inhalers properly, despite adequate instruction. The most widely used aerosol delivery system is the pressurised metered-dose inhaler (pMDI), although the use of dry powder inhalers has increased in recent years. Efficient delivery of drug to the lungs by pMDI requires correct positioning of the inhaler, a slow inspiratory flow rate, the synchronisation of canister actuation with inhalation, and holding of the breath (for about 5 to 10 seconds) at the end of inspiration. Various errors can occur with pMDI use, such as incorrect timing of actuation, poor inhalation technique can affect the amount of drug reaching

the lungs and response to therapy. For example, slow inhalation (30 Umin) of terbutaline sulfate, administered by pMDI, achieved a greater increase in forced expiratory volume in one second (FEV I) than fast inhalation (90 Umin. Consequently, patients may become noncompliant with therapy because of difficulty using the inhaler or because the treatment is perceived as not being effective. Various spacer devices and valved holding chambers are available to improve or simplify inhalation technique with pMDIs, although they do not eliminate the need for correct inhalation technique. Some patients, particularly adolescents, may not wish to use such a device (especially in public places). Another potentially useful device is the breath-activated pressurised inhaler (Autohaler®), which avoids the need to coordinate aerosol discharge with inhalation) (Bateman et al., 2017).

Similarly, dry powder inhalers are designed to release the medication powder on inhalation, but require a relatively high inspiratory flow rate to release a full dose. As a result, dry powder inhalers are probably more suitable for maintenance therapy than for rescue from severe asthma exacerbations (when patients have decreased airflow (Nguyen and Ulrik, 2016).

Aim of the Study

The aim of this work is to assess the relationship between the level of peripheral blood eosinophil and severity of asthma. Also to assess the correlation between blood eosinophil level and use of corticosteroids.

Asthma Definition

sthma is a common, chronic respiratory disease affecting 1-18% of the population in different countries. Asthma is characterized by variable symptoms of wheeze, shortness of breath, chest tightness and/or cough, and by variable expiratory airflow limitation. Both symptoms and airflow limitation characteristically vary over time and in intensity (*de Groot et al.*, 2015).

The three main processes responsible for the clinical features of asthma are well recognized:

- Bronchoconstriction,
- Mucus hypersecretion,
- And airway inflammation.

However, the underlying pathophysiology responsible for these processes is complex and nuanced, involving multiple cell types and cytokines (*Lambrecht and Hammad*, 2015). Furthermore, the activity and clinical impact of each cellular and subcellular component varies considerably between individuals and can change over time, as well as in response to drug therapy and environmental/lifestyle influences (*McBrien and*, *Menzies-Gow*, 2017).

These variations are often triggered by factors such as exercise, allergen or irritant exposure, change in weather, or