

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Intranasal dexmedetomidine versus intranasal midazolam as pre anesthetic medication in pediatric age group undergoing adenotonsillectomy

Thesis

Submitted for Partial Fulfillment of M.D. Degree in Anesthesiology

By

Haidi Nashaat Shohdy Ghobrial

M.B.B.Ch., M.Cs, Ain Shams University

Supervised by

Prof. Dr. Bassem Boulos Ghobrial Saad

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Ayman Ibraheem Tharwat

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Sanaa Mohammed Mohammed El-Fawal

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2020

First and forever, thanks to **Allah**, Almighty for giving me the strength and faith to complete my thesis and for everything else.

I would like to express my sincere appreciation and gratitude to **Prof. Dr. Bassem Boulos Ghobrial Saad**, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his great support all through the whole work, for valuable guidance, and follow up of the progress of this work. I have been greatly honored by his supervision.

Profound and ultimate gratitude are expressed to **Dr. Ayman Ibraheem Tharwat**, Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his continuous help in following up the progress of the work, his continuous support and encouragement were really valuable.

I would like also to thank with all appreciation **Dr. Sanaa Mohammed Mohammed El-Fawal,** Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for the efforts and time she has devoted to accomplish this work.

I wish also to express my deepest gratitude and thanks to all my **family**, specially my **Parents** and my **Husband**, for their support and help.

💹 Haidi Nashaat Shohdy Ghobrial

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Work	3
Review of Literature	
Anatomical consideration	4
Preoperative Anxiety in Pediatric Population	7
Midazolam	27
Dexmedetomidine	49
Patients and Methods	75
Results	82
Discussion	94
Conclusion	103
Summary	104
References	108
Arabic Summary	

List of Abbreviations

Abbr. Full-term

AR : Adrenoceptors

ASA : American Society of Anesthesiologists

AVP : Antidiuretic Action of vasopressin

BBB : Blood Brain Barrier

BZDs : Benzodiazepines

CBF : Cerebral Blood Flow

CHD : Congenital Heart Disease

CMRO2 : Cerebral Metabolic Rate of Oxygen

CNS : Central Nervous System

CPSP : Chronic postsurgical pain

CRT : Corticotropin Releasing Hormone

FDA : Food and Drug Administration

GABA: g-aminobutyric acid

HPA: Hypothalamic Pituitary Adrenal

HR : Heart rate

ICU: Intensive Care Unit

IM : Intramuscular

IN : Intranasal

IV : Intravenous

IVRA : Intravenous Regional Aneasthesia

MAS : Mask Acceptance Scale

MCC : Mucociliary Clearance

MOAA/S : Modified Observers Assessment of Alertness/

Sedation Scale

MOPS : Modified Objective Pain Scale

OT : Operating Theatre

PACU: Post Anesthesia Care Unit

PICU: Pediatric Intensive Care Unit

PONV: Postoperative Nausea and Vomiting

PPI : Proton Pump Inhibitor

PVN: Paraventricular Nucleus

SBP : systolic blood pressure

SOL : Sleep Onset Latency

TSPO: Translocator Protein

UK : United Kingdom

List of Tables

Table No.	Title J	Page No.
Table (1):	Modified Observer's Assessment Alertness/ Sedation Scale	
Table (2):	Anxiety scale	77
Table (3):	Child-Parent Separation Score	78
Table (4):	Mask Acceptance Scale	78
Table (5):	Emergence Agitation Scale	80
Table (6):	Modified Objective Pain Score	80
Table (7):	Comparison between Dexmedetomic group and Midazolam group as regardemographic data	ards
Table (8):	Comparison between Dexmedetomic group and Midazolam group as regard systolic blood pressure (mmHg)	ards
Table (9):	Comparison between Dexmedetomic group and Midazolam group as regardiastolic blood pressure (mmHg)	ards
Table (10):	Comparison between Dexmedetomic group and Midazolam group as regarding child parent separation score.	ards
Table (11):	Comparison between Dexmedetomic group and Midazolam group as regardless Acceptance Score.	ards

List of Figures

Figure No	o. Title	Page No.
Figure (1):	During the preoperative visit, an instapproach to the anesthesia induction taken enabling the anesthesiologist the child's confidence and trust	can be to gain
Figure (2):	PH-dependent lipophilicity and hydro of midazolam	•
Figure (3):	Schematic illustration of benzodia: sensitive GABAA receptor complex	*
Figure (4):	Chemical structure of demedetomidine	2 52
Figure (5):	Comparison between Dexmedeto group and Midazolam group regarding rate (beat/min).	g pulse
Figure (6):	Comparison between Dexmedeto group and Midazolam group accord SpO2%	ling to
Figure (7):	Comparison between Dexmedeto group and Midazolam group as a sedation scale MOAAS.	regards
Figure (8):	Comparison between Dexmedetomidi Midazolam group as regards Anxiety S	
Figure (9):	Comparison between Dexmedeto group and Midazolam group as a Modified Objective Pain Scores.	regards
Figure (10):	Comparison between Dexmedeto group and Midazolam group as a Emergence Agitation Score	regards

Introduction

denotonsillectomy is one of the most common surgical procedures performed on pediatric patients. Relieving pre- and post- operative anxiety is an important concern for the pediatric anaesthesiologist. Anxiety can produce aggressive reactions, increase distress and may make the control of postoperative pain difficult. Pre anaesthetic medication in children should aim at relieving this anxiety and psychological trauma and also to facilitate the induction of anesthesia without prolonging the recovery (*Ghali et al., 2011*).

A premedicant drug must have an acceptable, non-traumatic route of administration in order not to add extra stress to the child. Many studies have shown that intranasal route is an effective way to administer premedication and sedation to children. It is a relatively easy non-invasive route with high bioavailability and rapid onset of action comparable to that of intravenous (IV) administration because of the rich blood supply of the airway mucosa and bypassing the first pass hepatic metabolism. Also, this route is not painful and does not require trained personnel (*Wang and Bu*, 2002).

The benzodiazepine, midazolam a GABA receptor inhibitor is the most commonly used sedative drug for premedication in children. Administered intranasal, midazolam is an effective option for conscious sedation (*Mostafa and Morsy*, 2013).

Midazolam has a number of beneficial effects when used as premedication in children: sedation, fast onset, and limited duration of action. Despite having a number of beneficial effects, it is far from an ideal premedicant having side effects such as restlessness, paradoxical hyperactive reaction, cognitive impairment, amnesia, and respiratory depression (*Bergendahl et al.*, 2006).

Dexmedetomidine is a newer alpha 2-agonist with a more selective action on the alpha 2-adrenoceptor with both sedative and analgesic properties and is devoid of respiratory depressant effect. Its bioavailability is (72.6–92.1%) when administered via the nasal mucosa. These properties render it potentially useful for anaesthesia premedication (*Darshna et al.*, 2015).

So considering all these aspects, the present study was planned to evaluate sedation level and ease of child parent separation and postoperative analgesia by comparing intranasal dexmedetomidine with intranasal midazolam as premedication in pediatric patients posted for adenotonsillectomy.

Aim of the Work

The purpose is to compare between dexmedetomidine and midazolam effects as premedications on preoperative sedation, the ease of child parent separation, mask acceptance (primary outcome), hemodynamics stability, postoperative analgesia and agitation (secondary outcome).

Anatomical consideration (Anatomy of the Nasal cavity)

Anatomy of the nasal cavity

The nasal cavity is divided by the nasal septum into two symmetrical halves, opening at the nostrils and extending posteriorly to the nasopharynx. Both halves consist of four areas, the nasal vestibule, atrium, respiratory region and olfactory regions. The cavity is lined with nasal mucosa that has a total surface area of approximately 150 cm² (*Mygind and Dahl*, 1998).

With the largest surface area, the nasal respiratory mucosa is considered the most important section for systemic drug delivery. Its epithelium consists of pseudostratified columnar epithelial cells, goblet cells, basal cells and mucous and serous glands. The vascularity of the nasal mucosa significantly influences systemic drug absorption. The vascularization of the vestibule and atrium areas is low whereas the respiratory and olfactory regions are highly vascularized (*Pires et al., 2009*).

Volume of the nasal cavity

The nasal cavity has a total volume of 150-200 μ L. Due to mucociliary clearance and the limited amount of available water as a solvent, drugs for intranasal application are best administered as solutions in an ideal volume range of between 25 - 150 μ L per nostril. The maximum volume that

should be administered per nostril is 1ml. If the drug volume delivered exceeds the recommended volume, low viscosity solutions tend to flow into the nasopharynx and swallowed (*Pires et al.*, 2009).

Mucociliary clearance

Many epithelial cells of the nasal respiratory mucosa are covered with microvilli and fine projections called cilia. Microvilli enhance the respiratory surface area while cilia are essential to transport nasal mucus posteriorly toward the nasopharynx (*Merkus et al.*, 1998).

Under physiological conditions, nasal epithelium is covered with a thin mucus layer produced by secretory glands and goblet cells. This layer plays an important role in the defense of the respiratory tract as agents adhering to the mucus layer are transported by ciliary action to the nasopharynx and eventually to the gastrointestinal tract. This process is known as mucociliary clearance (MCC) and significantly influences nasal drug absorption (*Pires et al.*, 2009).

Method of intranasal administration

The method of intranasal administration used affects the site of drug deposition and subsequent absorption. Methods include aerosol sprays, drops and a liquid stream. The position of a patient in an upright or supine position during intranasal administration may be important especially when larger