

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Analysis of Health-Related Quality of Life of Patients With Clinically Localized Prostate Cancer After Treatment With Intensity Modulated Radiation Therapy (IMRT) Versus 3D Radiation Therapy

Thesis

Submitted for Partial Fulfillment of the Master degree of Clinical Oncology & Nuclear medicine,

Presented by
Bassam Emad Makram
(M.B.B. CH.)

Under supervision of

Prof. Dr. Zeinab Mohammed Abd-elhafeez

Professor of Clinical Oncology & nuclear medicine Faculty of Medicine - Ain Shams University

Prof. Dr. Khaled El Husseiny Nasr

Professor of Clinical Oncology & nuclear medicine Faculty of Medicine - Ain Shams University

Assist, Prof. Mai Mohamed Ali Ezz El din

Assistant professor of Clinical Oncology & nuclear medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

List of Contents

Title	Page No.
List of abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Litrature	
Chapter (1) : Anatomy of P Pathophysiology of	rostate Gland and Frostate Cancer5
Chapter (2): Health-related of	uality of life15
Chapter (3): HRQOL Instru	nents23
Patients and Methods	
Results	46
Discussion	67
Conclusion	76
Summary	77
References	
Appendix	
Arabic Summary	

Tist of abbreviations

3D CRT 3 Dimensional conformal radiation therapy

ADT Androgen deprivation therapy

ASR Age-standardized rate
CT Computed tomography
DRE Digital rectal examination
EBRT External beam radiotherapy

EORTC European Organization for Research and Treatment

EPIC Expanded Prostate cancer Index Composite

EWB Emotional Well-Being

FACT-P Functional Assessment of Cancer Therapy

FFF Freedom from failure FWB Functional Well-Being

G.S Gleason score
GI Gastrointestinal
GU Genitourinary

HDR-BT High-dose rate brachytherapy HRQOL Health-related quality of life IMC International medical center

IMRT Intensity modulated radiation therapy

LNs Lymph Nodes

MRI Magnetic resonance imaging

NCIC National cancer institute of Canada

PCa Prostate cancer

PCOS Prostate Cancer Outcomes Study PCSS Prostate Cancer Symptom Scale

POMS Profiles of Moods States

PORPUS Patient-Oriented Prostate Utility Scale

PSA Prostate-Specific Antigen
PSR Performance status ratings
PWB Physical Well-Being

QOL Quality of Life Rth Radiation therapy

RWD Relationship with doctor

SF-36 Short Form-36 SWB Social Well-Being

TRUS Trans-rectal ultrasonic sound

UCLA-PCI The University of California Los Angeles Prostate Cancer

Index

VMAT Volumetric modulated arc therapy

List of Tables

Table.	No. Sitle	Page No.
Table ((1): Validated instrument for assessing for prostate c	ancer
	health-related quality of life (HRQOL)	28
Table (2	2): Demographics and clinical variables for patients	48
Table (3): Mean, standard deviation (SD) and p value scor	es of
	Functional Assessment of Cancer Therapy-Pro	ostate
	(FACT-P) scale and Physical well-being (PWB), S	Social
	Well-Being (SWB), Emotional Well-Being (E	WB),
	Functional Well-Being (FWB), and prostate con	cerns
	subscales of FACT-P at baseline	50
Table (4): Mean, standard deviation (SD) and p value scor	es of
	Functional Assessment of Cancer Therapy - Pr	ostate
	(FACT-P) scale and Physical well-being (PWB), S	Social
	Well-Being (SWB), Emotional Well-Being (E	WB),
	Functional Well-Being (FWB), and prostate cor	ncerns
	subscales of FACT-P after 3 months	52
Table ((5): Mean, standard deviation (SD) and p value scor	
	Functional Assessment of Cancer Therapy-Pro	ostate
	(FACT-P) scale and Physical well-being (PWB), S	
	Well-Being (SWB), Emotional Well-Being (E	WB),
	Functional Well-Being (FWB), and prostate con	
	subscales of FACT-P after 6 months	54
Table (6): Comparison between physical well-being subscales	mean
	scores between two age groups treated by 3D vs. I	MRT
	throughout the three time periods	62
Table (7): Comparison between Social well-being subscales	mean
	scores between two age groups treated by 3D vs. I	
	throughout the three time periods)	
Table (8	8): Comparison between emotional well-being subscales	mean
	scores between two age groups treated by 3D vs. I	MRT
	throughout the three time periods)	63
Table (9	9): Comparison between functional well-being subscales	
	scores between two age groups treated by 3D vs. I	MRT
	throughout the three time periods	64

Tist of Tables (Cont ..)

Jable. No.	(itle	Page No.
Table (10): Co	mparison between prostate concerns	subscales mean
scor	res between two age groups treated b	by 3D vs. IMRT
thro	ughout the three time periods	65
Table (11): Cor	mparison between FACT-P total mean	n scores between
two	age groups treated by 3D vs. IMR7	Γ throughout the
three	e time periods	66
Table (12): Qua	ality of life previous studies	74

List of Figures

Fig. No.	Title	Page No.
Figure (1): Anatomy of	Prostate Gland	5
Figure (2): Dose color-	-wash of IMRT (upper panels: A-C) a	nd
3D-CRT (lowe	er panels: D-F) treatment plan	11
Figure (3): FACT-P sub	scales mean scores in 3D vs IMRT grou	ıps
at baseline		51
Figure (4): FACT-P sub	scales mean scores in 3D vs IMRT grou	ıps
after 3 months		53
Figure (5): FACT-P sub	scales mean scores in 3D vs IMRT grou	ıps
after 6 months		55
Figure (6): Physical we	ell-being subscale mean scores changes	in
3D vs. IMRT	throughout the 3 time periods	56
Figure (7): Social well-	being subscale mean scores changes in 3	3D
vs. IMRT thro	ughout the 3 time periods	56
Figure (8): Emotional w	vell-being subscale mean scores changes	in
3D vs. IMRT	throughout the 3 time periods	58
Figure (9): Functional w	vell-being subscale mean scores changes	in
3D vs. IMRT	throughout the 3 time periods)	59
Figure (10): Prostate co	oncerns subscale mean scores changes	in
3D vs. IMRT	throughout the 3 time periods	59
Figure (11): FACT-P to	otal mean scores changes in 3D vs. IMI	RT
throughout the	e 3 time periods)	60

Introduction

Prostate cancer is the second most commonly occurring cancer in men and the fourth most commonly occurring cancer overall. There were 1.3 million new cases in 2018 (Ferlay J, et al., 2018). In 2015, 2747 cases were diagnosed in Egypt, which accounts for 4.27% of all cases of cancer in men (Ibrahim AS, et al., 2014), and 3109 new patients in 2018 (Freddie, et al., 2018).

Clinical cancer physicians and oncologists understand the significance of assessing survival and treatment clinical outcomes as well as the quality of life of patients in terms of individual symptom experiences, including physical, mental and social functions (Bottomley A 2002, Velikova G, et al., 2012) The growing number of people diagnosed with prostate cancer and raising life expectancies underline the value of determining the quality of life of these patients (Eton DT, et al., 2002, Penson DF, et al., 2003). A number of studies have shown that prostate cancer and its treatments affect urinary, intestinal and sexual function as well as physical and psychological health, with effects that appear to vary depending on the stage of the disease and the treatment given (Eton DT, et al., 2002, Lane A, et al., 2016).

The treatment options available for clinically localized cancer prostate (T1-3N0M0) (**Sobin LH**, **et al.**, **2009**) include: active surveillance, radical prostatectomy, brachytherapy, and external beam radiation therapy with or without hormone therapy (**Filson CP**, **et al 2015**).

Studies revealed that patients with prostatectomy were more probable than patients with radiation to have urinary incontinence at 2 years. Even after laparoscopy, the incidence of erectile dysfunction and urinary incontinence stayed unchanged (**Resnick MJ**, et al. 2013).

Since most patients diagnosed with non-metastatic prostate cancer can survive longer than 10 years, it is essential to choose radiotherapy methods with minimized radiation therapy-related toxicity to improve the quality of life (Ohri N, et al., 2012). However, higher doses are linked to increased normal tissue toxicity, such as late gastrointestinal (GI) toxicity and late genitourinary (GU) toxicity (Zietman AL, et al., 2008).

New radiation therapy methods arose as technology improvements and were used in clinical practice. Three-dimensional conformal radiation treatment (3DCRT) provides a radiation dose that is consistent with the tumor

target volume. Thus, 3DCRT raises the target dose considerably while decreasing healthy tissue exposure (Hanks GE. 2000). Radiation therapy techniques have evolved into an advanced form of 3DCRT, intensity modulated radiation therapy (IMRT), which generates non-uniform fields to increase the dose of radiation delivered to the target volume while minimizing the organs at risk irradiation. (Marta GN, et al., 2014).

There are health-related quality of life (HRQOL) associated side effects for all these treatments, and it became an important issue to concern about while choosing the treatment method for the patients (Lane A, et al., 2016).

As there are almost no data about HRQOL for cancer prostate patients treated by radiation therapy in Egypt, in this thesis we compared it between two groups of patients treated by two methods using their response outcomes to a licensed questionnaire FACT-P (Functional Assessment of Cancer Therapy, 2007). These findings may facilitate treatment counseling of men with localized prostate cancer.

Aim of the Work

The aim of the work was to report on the quality of life outcomes in a number of male patients who underwent intensity modulated radiation therapy (IMRT) for clinically localized cancer prostate, compared to patients underwent 3D CRT, using licensed Arabic version of FACT-P questionnaire.

Anatomy of Prostate Gland and Pathophysiology of Prostate Cancer

The prostate gland is a single chestnut-shaped gland about the size of the peach pit (about 4 centimeters across and 3 centimeters thick) and encircles the proximal part of the urethra, just inferior to urinary bladder (**Shier et al.**, **2007**). (Figure 1)

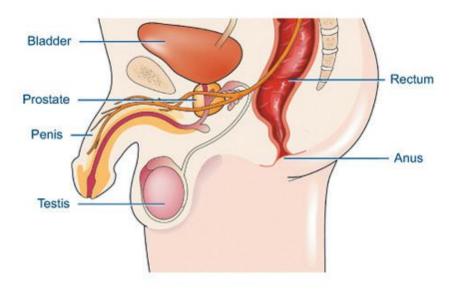


Figure (1): Schematic overview of the lower male genitourinary tract (Taylor A, et al., 2004).

Prostate cancer (Introduction):

About 95% of all prostate cancers are adenocarcinomas; then 4% that present transitional cell characteristics and are thought to develop from urothelial cells form the prostatic urethra. The remaining cases are either neuroendocrine or squamous cell carcinomas (Chodak GW, et al., 2017).

The incidence age-standardized rate (ASR) is higher in the westernized countries (the highest ASR is in the United States then in Sweden) and lowest is in Asian countries (McCance & Huether, 2006).

Although the incidence of prostate cancer is relatively high, the widespread use of preventive measures such as screening for Prostate-Specific Antigen(PSA), and digital rectal examination along with the different treatment modalities that are used early to treat prostate cancer help to decrease the age-adjusted death rate (Bartsch et al., 2001).

The risk factors of localized prostate cancer are not well known. However some risk factors are confirmed like:

Age as risk increases with old aged men, as well as family history, whereas race and diet are still under debate (Cepeda OA, et al., 2006, Bailey DB, et al., 2007).