

Ain Shams University Faculty of Engineering Architecture Department

Enhancing Maintenance Management for Buildings through Building Information Modeling in MENA Region

A THESIS

Submitted in Partial Fulfillment of the Requirements of the Degree of

MASTER OF SCIENCE IN CONSTRUCTION MANAGEMENT

Submitted by

Tamer Ahmed Mohamed Hossam

B. Sc. In Architecture (2013)

Supervised by:

Prof. Dr. Ali Mohamed Fathy Eid

Professor of Architecture, Faculty of Engineering Ain Sham University Prof. Dr. Laila Mohamed Khodeir

Associate Professor of Architecture, Faculty of Engineering Ain Sham University

July - 2019

Ain Shams University Faculty of Engineering Architecture Department

Name: Tamer Ahmed Mohamed Hossam El-Deen

Thesis: Enhancing Maintenance Management for Buildings

through Building Information Modeling in MENA

Region

Degree: Master of Science in Architecture Engineering

EXAMINERS COMMITTEE

Name and Affiliation	Signature
Prof. Dr. Ahmed Samer Ezz El-Deen. Professor of Architecture Engineering, American University in Cairo (AUC).	
Prof. Dr. Akram Farouk Mohamed. Professor of Architecture Engineering, Ain Shams University.	
Prof. Dr. Ali Mohamed Fathy Eid Professor of Architecture Engineering, Ain Sham University	
Prof. Dr. Laila Mohamed Khodeir Associate Professor of Architecture Engineering, Ain Sham University	
Date: / / 2019	

Postgraduate Student

Authorization Stamp: The thesis is authorized at / / 2019

College Board approval

University Board approval

/ 2019

/ / 2019

Declaration

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Architecture. The work included in this thesis was carried out by the author in the Department of Architecture, Faculty of Engineering, Ain Shams University, Cairo, Egypt. No part of this thesis has been submitted for a degree or qualification at any other university or institution.

itution.	
	Name: Tamer Ahmed Mohamed Hossam
	Signature:
	Date:

Acknowledgment

Thanks Allah the Almighty the most merciful and benevolent without whom I would not have been able to complete this thesis. I would like to express my gratitude to **Prof. Dr. Ali Fathy Eid** and **Dr. Laila Mohamed Khodeir** for all of the support and guidance that helped me overcome all the pitfalls that I faced during working and complete it in the best form, may God bless them.

I would also like to thank all the architecture professors at Ain Shams University for their great efforts with me in the pre-master stage. Their advice was the key to produce such work. I wish them the best.

Also, I would like to thank my colleagues for helping me during the premaster stage, for supporting me to keep going and provide me with the information and data to finish the thesis appropriately.

At Last, I would like to give special thanks for my parents, I could not have done anything without their love, care, and support. They have inspired me to become the man who I am, may Allah give them health and wellness.

Thank you all ...

Curriculum Vitae

Name: Tamer Ahmed Mohamed Hossam

Date of Birth: 24th January 1991

Place of Birth: Cairo, Egypt.

Qualification: B.Sc. Degree in Architectural Engineering, Integrated

Thebes Academy.

Graduation Year: 2013

Current Job: Architect at Saudi Diyar Consultant.

Table of Contents

		<u>Page</u>		
Decla	ration	I		
Ackno	owledgment	II		
Currio	culum Vitae	III		
Table	of Contents	1		
List o	of Acronyms	VIII		
Abstr	act	IX		
Introd	luction	XI		
Table	of Figures	16		
List o	f Tables	18		
Chapt	ter 1. Maintenance Management	20		
1.1	Introduction	20		
1.2	Definition of Building Maintenance	21		
1.3	The Emergence of Building Maintenance	22		
1.4	Defining Stakeholders	24		
1.5	Types of Building Maintenance	24		
1.6	Procedures of Building Maintenance Standard	27		
1.7	Introduction to Maintenance Management	29		
1.8	The Maintenance Management Process	30		
	1.8.1 The Definition of Maintenance Strategy	31		
	1.8.2 Implementation of the Strategy	31		
1.9	Benefits of integrating Maintenance Management in the Design Process	34		
1.10	Life Cycle Costing (LCC) Approaches	34		
1.11	Concluding Remarks & Summary	35		
Chapt	ter 2. Integration of Building Information Modeling with Maintenance Management Process	37		
2.1	Introduction	37		
2.2	Identification of Building Information Modeling 3			

2.3	Definitions of Building Information Modeling		
2.4	History	of BIM Standards in Construction Handover (EDMS)	44
	2.4.1	Operations and Maintenance Support Information in 1990-s	44
	2.4.2	Appearance of the extensible markup language in 2000	45
	2.4.3	Appearance of the Industrial Foundation Class Model in 2002	45
	2.4.4	Formation of National Building Information Model Standard effort in 2005	46
	2.4.5	Initiation of Construction Operation Building information exchange in 2006	n 46
	2.4.6	Implementation of COBie in 2007	47
2.5	The Pro	ocess of Integrating BIM with Maintenance Management	49
2.6	The Ro	le of BIM in Supporting MM	53
2.7	Data and Process Required to Support BIM-Enabled Maintenance Management		55
2.8	The Incorporation of BIM-Based Tools with Maintenance Management		55
2.9	Benefit	s of Integrating BIM for Maintenance Managers	58
2.10	Conclu	ding Remarks and Summary	59
Chapte	r 3. Integ	gration of BIM Standards with MM	61
3.1	Introdu	ction	61
3.2	Definition of Construction Operation Building information exchange (COBie)		62
3.3	Initiation of Construction Operation Building information exchange.		63
3.4	Implementation of Construction Operation Building information exchange		63
3.5	Objectives of Construction Operation Building information exchange		65
3.6		onstruction Operation Building information exchange e) Worksheet	67
	3.6.1	Assets needed for COBie spreadsheet	68

3.7	The COBie Process.			70
	3.7.1	Equipme	nt Serial Number Capture.	70
	3.7.2	Equipme	ent and Material Placement.	70
	3.7.3	Warranty	Capture.	71
3.8	The C	OBie Proje	ect	71
3.9	The re	elation betw	veen COBie and Maintenance Management	73
	3.9.1	Maintena	ance Instructions Capture.	73
	3.9.2	Maintena	ance System Exchange.	73
	3.9.3	Future C Inventor	OBie Capability: As-Maintained Facility	74
3.10	Steps	of Coding	COBie	74
3.11	Concl	uding Remarks & Summary		75
Chapt	er 4.		ns of Construction Operation Building n exchange	77
4.1	.1 Introduction			77
4.2	COBi	e Examples	S	77
	4.2.1	Example	1: Texas Health Science Center Case	77
	4.2.2	Example	2: University of Washington (UW)	93
Chapt	er 5. Pra	ctical Stud	y	107
5.1	Introd	uction		107
5.2	Profil	Profile of Respondents		
	5.2.1	Applicat	ion of Questionnaire	108
		5.2.1.1	Structure of the Survey	109
		5.2.1.2	The Guidance of BIM in Companies	110
		5.2.1.3	The Ratio of BIM Usage	111
		5.2.1.4	Types of Applied BIM Software	112
		5.2.1.5	Primary Design Function of BIM	113
		5.2.1.6	Obstacles Facing BIM Applications	114
		5.2.1.7	The Appearance of BIM Application	116
		5.2.1.8	Familiarity with COBie	117
		5.2.1.9	COBie Implementation	118

	5.2.2	Application of Interviews	119
5.3	Design of Framework		121
	5.3.1	Framework Generation	121
	5.3.2	The process of the Framework	121
	5.3.3	Roles and Responsibilities	127
	5.3.4	Limitations of the Framework	131
5.4	Conclu	ding Remarks	131
Chapte	r 6. Con	clusions and Recommendations	132
6.1	Introdu	action	132
6.2	Conclu	sions	132
6.3	Framev	work Limitation	133
6.4	Recom	mendations	133
6.5	Future	Work	134
Referer	nces		135
Books			135
Thesis			135
Papers			136
Journal	Articles	s	136
Confere	ences		139
Intervie	ewee		140
Website	es		140
Append	dix I		141
Append	dix II		145

List of Acronyms

BM Building Maintenance
TBM Time Based Maintenance
CBM Condition Based Maintenance
RCM Reliability Centered Maintenance

RBM Risk-Based Maintenance
RBI Risk-Based Inspection
MM Maintenance Management
BIM Building Information Modeling

AEC Architecture, Engineering, and Construction
NIBS National Institute of Building Sciences

GSA General Service Administration

MEP Mechanical, Electrical, and Plumbing

CPM Critical Path Method PM Project Management

EDMS Electrical Document Management System

ID Identity

COBIE Construction Operation Building Information Exchange

IAI International Alliance for Interoperability
NBIMS National Building Information Model Standard

IFC Industry Foundation ClassIT Information TechnologyRFP Request for ProposalRFI Request for Information

GMMS Global Maintenance Management System

CMMS Computerized Maintenance Management System

FUSS Facilities and Construction, Utilities, Safety and Security

Administration

BSL Biological Safety Lab

WO Work Order

O & M Operation and Maintenance

FMOC Facility Maintenance and Operations Committee
OMSI Operations and Maintenance Support Information

UFGS Unified Facility Guide Specifications

NIST National Institute of Standards and Technology

GIS Geographic Information System

Abstract

Building maintenance and management are two sides for the same coin, which keep a building with the best quality during its life cycle time. Building management plays a role in covering the basic lines of security, cleanliness and implementing maintenance plans to reach the best performance and efficiency.

Maintenance management has become one of the most important factors that help complex buildings to perform effectively. As a result, buildings life span has dramatically increased especially when using recent technology. Maintenance management has become more powerful where building information modeling (BIM) helped in making standards that allows maintenance managers to make sure that every component in the building is working effectively.

However, four major steps in this thesis were done to help in generating a recommended framework that could help AEC firm in future. Where, analyzing theoretical data from literature reviews in fields of building maintenance, maintenance management and BIM will take the first place. While, thesis scope focuses on 7D services of BIM dimension which is related to maintenance management and construction operation building information exchange (COBie).

Thus, spotting the light on two of COBie applications and how using COBie standard and integrating it with maintenance management is an effective tool. Furthermore, a questionnaire survey was done with nearly 40 persons at the consultancy, contracting and real estate companies to know how far BIM is spread in Egypt and COBie familiarity and knowledge.

Finally, A sample was selected for a one-to-one interview with experts to cover BIM spread and COBie knowledge in MENA region. Consequently, this thesis recommends a framework for reducing cost, time and resources for complex buildings. The framework will integrate maintenance management, BIM and COBie standard by computerizing construction handover documents and by explaining how rules and guidelines can improve the enhancement of maintenance management. Furthermore, this framework needs to be further verified in future researches.

Keywords

Building Maintenance, Maintenance Management, Building Information Modeling, Construction Operation Building Information Exchange.

Introduction

Statement of the Problem

As per previous researches ,operation and maintenance costs currently account approximately 55% of the total cost (Flanegan and Norman, 1989), while the cost of operating and maintaining a facility represents approximately 85% of the total cost of ownership, then decreased till it reached a range of 50-70% (Teicholz E., 2001).

Where the main problem that is tackled through this thesis is the lack of coordination between the designer, constructor, contractor, maintenance staff and managers "the stakeholders" involved in the phases of constructing and operating the building. This problem includes technical, management and administration, financial, spare parts and proper training for the employees. This could lead to waste time, increase running cost and reduce proficiency of a building during delivering data from construction to operation phase, which may be not updated, confused, insufficient or even very large according to a lot of modifications. (Njabulo B, 2018)

Many companies are still working with traditional databases such as manual documentation handover protocol between construction and operation phases. When a modification is needed, for example, the number of revisions done in drawings and site correspondence documentations, simultaneously, increase. This leads to stacking huge quantities of documentation in the form of papers which makes it hard to find the exact data needed, and hence, it wastes valuable working hours. As a result, employees tend to solve the problem by increasing the number of workers which may increase the indirect cost of the project. Thus, there is a need for such a framework.

Many construction firms have cited traditional manual documentation as one of the most challenging tasks performed in the delivery process for buildings. There are many challenges with the traditional manual documentation some of which include the following:

- Lack of ability to identify specific information needed.
- Waste of time and resources during the expulsion of information.

- Delays in the maintenance process due to the conflict being identified on-site.
- Overall reduced productivity for everyone involved in the process.

As a result of these problems with current technological processes, the product of documentation does not fully satisfy the objectives of any of the project participants. (Albrice D, 2016)

Research Aim

The main objective of this research is to generate an adaptive framework that could be implemented on construction buildings in MENA region, it will increase the performance of maintenance management and interoperability through improved integration with building information modeling standard (COBie). Also, it will help in providing several solutions which satisfy stakeholders, especially maintenance managers and their teams. In addition, many advantages will come out of this integration by clarifying and organizing the maintenance process through the lifetime of a project.

Furthermore, it spots the light on identifying the most optimum building maintenance type and its procedures which help in increasing the lifetime of project components and reduce the cost of maintenance budget. Also, integrating building information modeling with maintenance management helps in achieving high rates of efficiency and quality of the components of a project. Where BIM simulates a virtual model that can help to show problems and conflicts that may appear during the construction phase and its standard focuses on producing accurate and specific database consisting of all the required information.

Thus, integration between maintenance management, BIM and COBie standard is expected to mitigate the root causes of the problem. This leads to a reduction in cost and time. In addition, COBie standard will create a database for specific information of every component in a building. Therefore, it could help different stakeholders and organize their process through the following procedures:

- Shorten the duration of getting the information needed from maintenance database and schedules.
- Lowering the cost of the maintenance process in a project.
- Knowing types of maintenance, procedures and strategies.
- Usage of Building Information Modeling (BIM) to support AEC firm.
- Computerizing the information gathered during different phases of a project by using COBie standard.
- Linking COBie standard with the international market to ensure having the best performance and quality without wasting time or preventing the building from applying its function.
- Evaluating COBie applications to know its limitations and effect of integrating it with maintenance management.
- Designing a framework that integrates MM with BIM and COBie.

Research Methodology

To achieve the aim of this thesis, a variety of references and sources have been reviewed and analyzed, which are related to the field of building maintenance, maintenance management, BIM system, COBie standard and analyzing the applications of COBie to show how integrating it with the maintenance management is an effective tool in mitigating the problem of the research.

Furthermore, a questionnaire survey was done with nearly 40 persons concentrating on engineering companies such as consultancy, contracting and real estate companies, in order to know how far BIM is spread in Egypt, followed procedures and protocols, scale of projects they use BIM in it, its effectiveness on each phase and familiarity with COBie standard.

Moreover, a one to one interview was done with a selected 8 foreign experts in order to know how far the process of BIM is implemented in MENA region, the scale of projects they use in it, obstacles facing them and their knowledge and implementation for COBie standard.