

Role of MRI T2 mapping in assessment of articular Knee Cartilage in Osteoarthritis

Thesis Submitted for partial fulfillment of M.D. degree in Diagnostic Radiology

By Muhammad Atif Ibrahim Alsayyad

M.Sc. of Diagnostic Radiology Faculty of Medicine Ain Shams University

Supervised By

Prof. Dr. Azza Abdel Ghafar Boraei Mohamed

Professor of Diagnostic Radiology
Faculty of Medicine-Ain Shams University

Asst. Prof. Dr. Khaled Ahmed Mohamed Ali

Ass. Professor of Diagnostic Radiology Faculty of Medicine-Ain Shams University

Dr. Rasha Tolba Wahba Khattab

Lecturer of Diagnostic Radiology
Faculty of Medicine-Ain Shams University

Faculty of medicine Ain Shams University 2020

ACKNOWLEDGEMENT

FIRST AND FOREMOST, THANKS TO ALLAH

I would like to express my deepest gratitude and thanks to **Prof. Dr.** Azza Abdulghaffar Mohamed, Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University; for her continuous kind supervision; generous advices and endless ideas for this work to be achieved. Indeed, it has been a privilege for me to be under her sincere supervision.

I wish to express my deepest appreciation to Asst. Prof. Dr. Khaled Ahmed Ali, Asst. Professor of Diagnostic Radiology, and Dr. Rasha Tolba Khattab, Lecturer of Diagnostic Radiology, Faculty of Medicine, Ain Shams University; for their unlimited assistance, kind cooperation, valuable aid and keen supervision.

My appreciation is extended to my Colleges and every person who taught me a word in the field of Diagnostic Radiology; I am sure that this had its contribution in this work.

Last but not least, I dedicate this work to my Family, whom without their sincere emotional support, pushing me forward; this work would not have ever been completed.

Muhammad Alsayyad

CONTENTS

	Page
LIST OF ABBREVIATIONS	i
LIST OF TABLES	iii
LIST OF FIGURES	v
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	
CHAPTER 1: Anatomy of the knee articular cartilage	. 4
CHAPTER 2: Pathology of osteoarthritis	16
CHAPTER 3: Technical Aspects of T2 mapping	32
PATIENTS AND METHODS	50
RESULTS	56
CASE PRESENTATIONS	66
DISCUSSION	73
SUMMARY & CONCLUSION	79
REFERENCES	81
ARABIC SUMMARY	-

ABBREVIATIONS

ACL	Anterior cruciate ligament
BLOKS	Boston-Leeds osteoarthritis knee score
BMI	Body Mass Index
ECM	Extracellular Matrix
FOV	Field of view
FSE	Fast Spin Echo
GRE	Gradient Echo
GWAS	Genome-wide association studies
IKDC	International Knee Documentation Committee
KOSS	knee osteoarthritis scoring system
MR	Magnetic resonance
MRI	Magnetic resonance imaging
ms	mellisecond
NCSS	Number Crunching Statistical System
OA	Osteoarthritis
PDFS	Proton density with fat saturation
PFPS	patellofemoral pain syndrome
PDWI	proton density-weighted image
SAR	specific absorption rate
SD	Standard Deviation

SE	Spin Echo
SNR	Signal-to-noise ratio
SPAIR	Spectral Attenuated Inversion Recovery
SPIR	Spectral Presaturation with Inversion Recovery
STIR	Short-TI Inversion Recovery
STZ	Superficial Transitional Zone
3D	Three Dimensional
TE	Time to echo
TR	Repetition time
2D	Two Dimensional
WHO	World Health Organization
WORMS	Whole-organ MR imaging Score

LIST OF TABLES

Table. No.	Title	Page
(1)	Classification of Osteoarthritis	18
(2)	International Knee Documentation Committee system	19
(3)	Merchant system	19
(4)	Modified Noyes grading	36
(5)	modified Outerbridge grading	38
(6)	Summary of semiquantitative MRI scoring systems for Knee Osteoarthritis	40
(7)	Advantages and Disadvantages of Different Fat- Suppression Techniques in Musculoskeletal MRI	45
(8)	Summary of MR Imaging Parameters	50
(9)	MRI sequences used in the study	52
(10)	Description of personal characteristics among cases and control groups	56
(11)	Frequency table showing the age range distribution	56
(12)	Description of personal characteristics among cases	57
(13)	Description of personal characteristics among control group	57
(14)	Frequency table showing the gender distribution among the cases and controls in the study group	58

Table. No.	Title	Page
(15)	Conventinal MRI findings	59
(16)	T2 mapping Findings	60
(17)	Comparison of diagnostic indices of conventional MRI and T2 mapping	61
(18)	T2 values & Cartilage thickness among the cases and controls	62
(19)	T-Test between the T2 values in cases and controls	64
(20)	Pearson's correlation between the T2 values and Age / cartilage thickness	64
(21)	Independent T-test regarding the cartilage thickness in tests and controls	65

LIST OF FIGURES

Fig. No.	Title	Page
(1)	Anatomy of the knee joint	4
(2)	Articular cartilage of the knee	5
(3)	Patello-femoral joint	6
(4)	Composition of articular cartilage	9
(5)	Articular cartilage zones	12
(6)	Articular cartilage histologic zones	12
(7)	Cartilage Zonation	13
(8)	Function of Articular Cartilage	15
(9)	Diarthrodial joints	17
(10)	Pathogenesis of osteoarthritis with risk factors	20
(11)	Findings of OA	26
(12)	Chondromalacia	28
(13)	Arthroscopic image of surface depression and/or surface fraying	29
(14)	Outerbridge classification of cartilage injury	30
(15)	Sagittal fat-suppressed T1-weighted spoiled gradient echo sequence	34
(16)	Sagittal proton density-weighted MRI of the knee	34
(17)	Axial fast spin-echo (FSE) images with fat saturation of cartilage damage "Modified Noyes Grading"	37
(18)	Axial 2D fat-saturated PD-weighted FSE images of retropatellar cartilage damage "Modified Outerbridge Grading"	39
(19)	Sagittal 2D fast SE images of the knee with various techniques	42
(20)	Axial 2D T2-weighted fast SE image of the knee	43

Fig. No.	Title	Page
(21)	Axial STIR image obtained in the knee	44
(22)	Bar diagram, normal knee cartilage T2 pattern	49
(23)	Comparison between normal and abnormal retropatellar cartilage by color T2 Map	49
(24)	Pie chart showing the gender distribution among all subjects	58
(25)	Box and Whisker plot for T2 values for Cases & Control groups	62
(26)	Box and Whisker plot for average Cartilage thickness among Cases & Control groups	63
(27)	ROC curve of T2 Values of the study	63
(28)	Pearson's correlation between the T2 values and Age / cartilage thickness	65
(29)	Case (1)	66
(30)	Case (2)	67
(31)	Case (3)	68
(32)	Case (4)	69
(33)	Case (5)	70
(34)	Case (6)	71
(35)	Case (7)	72

INTRODUCTION

INTRODUCTION

Osteoarthritis is a slowly progressive degenerative joint disease characterized by gradual loss of articular cartilage (*Karande and Kini*, 2018). It ranks with cancer and heart disease as a major cause of disability in the elderly. About 30% of the persons above 65 years of age are affected all over the world (*Kumar*, 2015).

Articular cartilage pathology may be the result of degeneration or due to acute injury. The articular cartilage is composed of cartilage cell and extracellular matrix including water, type II collagen, and proteoglycan. Currently, MRI is a powerful noninvasive tool for the evaluation of degenerative changes in the articular cartilage of knee and articular cartilage pathology because of its high sensitivity, specificity, high contrast, and multiplanar capability (*Farook et al., 2016*).

With advances in joint preservation surgery that are intended to alter the course of osteoarthritis by early intervention, there is a rising demand in developing accurate and reliable quantitative MRI techniques that are sensitive to early structural degeneration in articular cartilage (*Hesper et al.*, 2014).

There are two broad categories of MR imaging techniques according to their usefulness for morphologic or compositional evaluation of articular cartilage. Standard spin-echo (SE), Gradient-recalled echo (GRE), Fast SE, and three-dimensional SE and GRE

sequences are available to assess the structure of knee cartilage. To assess the knee cartilage matrix, including the collagen network and proteoglycan content, compositional assessment techniques, such as **T2 mapping,** may be used in clinical and research settings to promote earlier and more precise depiction of articular cartilage changes (*Crema et al.*,2011).

T2 mapping as a biochemically sensitive MRI technique can add robust biomarkers for disease onset and progression, and therefore, could be meaningful assessment tool for the diagnosis and follow-up of cartilage abnormalities (*Hesper et al.*, 2014).

T2 mapping of hyaline cartilage is an imaging technique for the qualitative and quantitative detection of the cartilage providing convincing color mapping and quantitative detection of the cartilage mainly regarding architecture and changes in water content, proteoglycan and collagen matrix ultra-structure associated with early cartilage degeneration (*Farook et al.*, 2016).

T2 mapping would combine the benefits of biochemical cartilage evaluation with remarkable features including short imaging time and the ability of high-resolution cartilage evaluation without the need for contrast media administration or special hardware (*Hesper et al.*, 2014).

AIM OF WORK

AIM OF WORK

The aim of this study is to elucidate the role of MRI complementary T2 mapping in assessment of articular knee cartilage for improving sensitivity of early detection of Osteoarthritis. Also, compare the articular cartilage T2 relaxation values in normal subjects and patients with osteoarthritis.

REVIEW OF LITERATURE