

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Chemistry Department

Design, Synthesis and electronic structural studies of some symmetrical and unsymmetrical phthalocyanines for photoelectrochemical applications

A thesis submitted for the Degree of Doctor of Philosophy of Science in Chemistry

Presented by

Basma Salah Mohamed Ghazal

M.Sc. Organic Chemistry, 2012

Assistant Researcher, National Research Centre

Submitted to

Chemistry Department

Faculty of Science

Ain Shams University

(2020)

Ain Shams University Faculty of Science Chemistry Department

Design, Synthesis and electronic structural studies of some symmetrical and unsymmetrical phthalocyanines for photoelectrochemical applications

A thesis submitted for the Degree of Doctor of Philosophy of Science in Chemistry

Presented by

Basma Salah Mohamed Ghazal

Under the supervision of

Prof. Dr. Ahmed Said Ahmed Youssef

Professor of Organic Chemistry
Faculty of Science-Ain Shams University

Prof. Dr. Saad A. Makhseed

Dr. Ewies F. Ewies

Professor of Organic Chemistry- Faculty of Science-Kuwait University

Ass. Professor of Organic Chemistry-National Research Centre

(2020)

APPROVAL SHEET

Thesis title: Design, Synthesis and electronic structural studies of some symmetrical and unsymmetrical phthalocyanines for photoelectrochemical applications.

Name of candidate: Basma Salah Mohamed Ghazal

This thesis has been approved by:

Thesis Advisors	Thesis Approved
Prof. Dr. Ahmed Said Ahmed Youssef	
Professor of Organic Chemistry-Faculty of Science-	
Ain Shams University	
Dr. Ewies F. Ewies	
Ass. Professor of Organic Chemistry- National	
Research Centre	
Prof. Dr. Saad A. Makhseed	
Professor of Organic Chemistry- Faculty of Science-	
Kuwait University	

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgment

My first and most important acknowledgement goes to my God for all that I achieved now. If one were to consider the significant milestones in their own lives, it would become necessary also to consider those who have made these milestones possible. Here, I will do my best to acknowledge the people who have made this thesis a reality.

I would like to begin by thanking my advisor Prof. Ahmed Said Youssef for the continuous support of my Ph.D. study and research, for his patience, and motivation. I have been extremely lucky to have a supervisor who cared so much about my work, thank you for your advice on both research as well as on my career have been invaluable.

Also, the acknowledge is extended to my advisor and mentor, Prof. Saad Makhseed, for his persistence, guidance, and advice. Prof. Makhseed offers to his students not only his scientific input and mentoring support but provides an example of someone who has truly found their calling in life. Prof. Makhseed demonstrates this daily with passion for his work that exceeds that which I have ever experienced in any of my colleagues or peers. I would like to thank Prof. Makhseed, the person who gave me all the scientific and moral support, whom I consider him the most affected person in my life, and I am honored to be now one of his students.

Also, I would like to express my deepest gratitude to my advisor Dr. Ewies, for his excellent guidance, caring, patience, and providing me with an excellent atmosphere for organizing research.

There are many individuals with whom I have directly worked in the lab who deserve my sincere gratitude: To Prof. Tomás Torres, Prof. Mahmut Durmuş, Prof. Viktor Nemykin, Dr. Ali Hussain, Dr. Ali Shuaib, Prof. Nageh Allam, Dr. Waleed, Ms. Lubna Salah, Mrs. Hend Sesa, Dr. Ahmed Abdel Nazeer, Dr. Asaithampi Ganesan and Mrs. Mayada Samir, who do not save any effort to help me to introduce my Ph.D. thesis in this good manner, thank you so very much for their support, encouragement and love. I am praying to God day and night to keep you with me forever and to be witness to my success.

I wish to thank my family for their support and encouragement. To my parents, I thank them for the values that you have instilled in me. Thank you for your encouragement and confidence, my parents always wanted me to become a doctor, so I hope this is good enough. To my brothers, Nourhan, Marwa, Mohammed, Tamer, Asmaa, and Manar for their prayers, love, and support. I hope I have provided for you an example of persistence.

I like to extend my love before thanks to my husband Metwally Madkour where he was always beside me throughout this difficult journey. It would be difficult to overcome these difficulties and I hope that we will remain together with our flowers Ahmed and Jana throughout my life and will be a witness for his success and I will be beside him always.

Table of Contents

	vledgment	
	of Contentsabbreviations and acronyms	
	summary	
Chapt	er 1: Introduction	4
1.1	Structure of phthalocyanines.	
1.2	Synthesis pathway of Phthalocyanines	9
1.2		
1.3	Electronic structure of phthalocyanine	18
1.3	.1 Molecular Orbital Description	18
1.3	.2 The nature of electronically excited states	20
1.3	.3 Singlet oxygen:	37
1.4	Applications of phthalocyanines.	42
1.4	.1 Photosensitization (Photodynamic therapy).	43
1.4	.2 Photovoltaics (Solar Cells).	46
1.5	General objectives	56
-	er 2: Experimental section	
2.1	Instrumentation	
2.1		
2.1		
2.2	Computational details	68
2.3	Photovoltaics	68
2.4	Syntheses	71
2.4	.1 Reagents	71
2.4	.2 Synthesis of novel triazolyl compounds	72
2.4	.3 Synthesis of novel carbazolyl compounds	93
_	ter 3: Symmetrical and Unsymmetrical Triazolyl Phthalocyanine for	
	A b - 4 4-	
3.1	Abstract:	
3.2	Background	
3.3 Triaz	Synthesis and Characterization of Symmetrical and Unsymmetrolyl Pcs	

3.3.1 Mg an	Synthesis and characterization of Symmetrical triazolyl A4 Pcs (Metal free d Zn complexes):
3.3.2 Heavy	Synthesis and characterization of Symmetrical Triazolyl A4 Pc (studying the atom effect; Indium(III) Pcs): ²²²
3.3.3 (A4,A)	Synthesis and characterization of Unsymmetrical Triazolyl Pcs 3B,A2B and B4):
3.4 S ₁	pectroscopic and Photophysical characterization118
3.4.1 A4 Pcs	Spectroscopic and Photophysical characterization of Symmetrical Triazoly (Metal free, Mg and Zn complexes):
3.4.2 A4 Pc	Spectroscopic and Photophysical characterization of Symmetrical Triazoly (studying the Heavy atom effect; Indium(III) Pcs):
3.4.3 Triazo	Spectroscopic and Photophysical characterization of unsymmetricallyl Pcs (A4, A3B, A2B and B4):
3.5 Pl	notodynamic activity of some selected symmetrical Pcs 146
3.6 C	onclusion157
Cell Appli	4: Symmetrical and Unsymmetrical Carbazolyl Phthalocyanine for Solar cation
	ackground
4.2 Ba	ackground
4.2 Ba	Ackground
4.2 B3 4.3 Sy carbazol 4.3.1 4.3.2	Ackground
4.2 B3 4.3 Sy carbazol 4.3.1 4.3.2	Ackground
4.2 Back 4.3 Sycarbazol 4.3.1 4.3.2 Solar Gauge 4.3.3 SubPc	Ackground
4.2 Back 4.3 Sycarbazol 4.3.1 4.3.2 Solar Gauge 4.3.3 SubPc	Ackground
4.2 B3 4.3 Sy carbazol 4.3.1 4.3.2 Solar G 4.3.3 SubPc 4.4 Sp 4.4.1 A4 Pcs 4.3.1	Ackground
4.2 B3 4.3 Sycarbazol 4.3.1 4.3.2 Solar G 4.3.3 SubPc 4.4 Sp 4.4.1 A4 Pcs 4.3.1 carbaz 4.3.2	Ackground
4.2 B3 4.3 Sycarbazol 4.3.1 4.3.2 Solar G 4.3.3 SubPc 4.4 Sp 4.4.1 A4 Pcs 4.3.1 carbaz 4.3.2 carbaz	Ackground
4.2 B3 4.3 Sy carbazol 4.3.1 4.3.2 Solar (4.3.3 SubPc 4.4 Sp 4.4.1 A4 Pcs 4.3.1 carbaz 4.3.2 carbaz 4.5 C Appendix.	rithesis and Characterization of Symmetrical and Unsymmetrical yl Pcs
4.2 B3 4.3 Sycarbazol 4.3.1 4.3.2 Solar G 4.3.3 SubPc 4.4 Sp 4.4.1 A4 Pcs 4.3.1 carbaz 4.3.2 carbaz 4.5 C Appendix. Mass speci	Ackground

MALDI-TOF spectra for compounds in Scheme 4.1.	192
MALDI-TOF spectra for compounds in Scheme 4.2.	193
MALDI-TOF spectra for compounds in Scheme 4.3.	194
LC-MS for compounds in Scheme 3.2.	195
LC-MS for compounds in Scheme 3.3	196
NMR spectra	
¹ H NMR spectra for compounds in Scheme 3.1	
¹³ C NMR spectra of non-quaternized compounds	202
¹³ C NMR spectra of quaternized compounds	207
Temperature-dependent ¹ H NMR spectra	210
¹ H NMR spectra for compounds in Scheme 3.2	211
¹ H NMR spectra for compounds in Scheme 3.3	214
¹ H NMR spectra for Quaternized compounds	217
¹ H NMR spectra for compounds in Scheme 4.1	221
¹ H NMR spectra for compounds in Scheme 4.2	228
¹ H NMR spectra for compounds in Scheme 4.3	229
Absorption spectra	
Absorption spectra for compounds in Scheme 3.1	232
Absorption spectra for compounds in Scheme 3.3.	237
Absorption spectra for compounds in Scheme 4.1.	244
Absorption spectra for compounds in Scheme 4.2.	246
Absorption spectra for compounds in Scheme 4.3.	251
NIR-Spectra for Chapter 3 compounds	253
X-ray photoelectron spectroscopy (XPS) for In complex	256
Electrochemical data:	
Single crystal X-ray diffraction studies Experimental	
Crystal structure of 2	
Crystal structure of 3	
Crystal structure of carbazole phthalonitrile (17)	
Crystal structures of carbazole substituted zinc-phthalocyanine (19)	
BibliographyArabic summary	

List of Figures:

Figure 1.1. Typical structure of a metallo-phthalocyanine showing the peripheral
substituents (β-position; 2,3,9,10,16,17,23 and 24) and non-peripheral substituents (α-
positions; 1,4,8,11,15,18,22 and 25)
Figure 1.2. Molecular structures of (a) unsubstituted phthalocyanine (H2Pc), (b) tetra(tert-
butyl) phthalocyanine as an example of substituted phthalocyanines (H2tbPc), (c) a
metal complex of H2pc ([M(pc)], where M denotes a divalent metal ion, such as
copper(II)), (d) unsubstituted porphyrin, and (e) its metal complex (M denotes a
divalent metal ion)
Figure 1.3. a) Axial coordination of phthalocyanines; b) bisphthalocyanine
Figure 1.4. Phthalocyanine analogues: a) tetrapyrazinoporphyrazine; b) 1,2
naphthalocyanine; c) diphthalocyanine; d) subphthalocyanine; e) azulenecyanine and
f) pyridinohemiporphyrazine Pcs absorb radiation corresponding to visible light and
have high optical stability. This is the reason why Pcs have been traditionally used as
dyes and pigments in the textile industry and paintings
Figure 1.5. Different synthetic routes of MPcs.
Figure 1.6. The proposed mechanism of cyclotetramerization
Figure 1.7. Structures of the four constitutional isomers of 2(3)-tetrasubstituted
metallophthalocyanines
Figure 1.8. Mixture of phthalocyanines obtained via statistical cyclotetramerization of two
differently functionalized phthalonitriles or diiminoisoindolines, A and B
Figure 1.9. a) UV-Visible spectra of free-base phthalocyanine (solid line) and metallo-
phthalocyanine (dashed line); b) schematic representation of the energy levels and
transitions (Q- and B-band) in a metallo-phthalocyanine showing the origin of Q and
B bands
Figure 1.10. Jablonski diagram. Absorption (A) and emission processes are indicated by
straight arrows (fluorescence, phosphorescence), radiationless processes by dashed
arrows (IC - internal conversion, ISC - intersystem crossing, VR - vibrational
relaxation)
Figure 1.11. The Dexter mechanism of energy transfer. The HOMO and LUMO of the
acceptor must fall between the HOMO and LUMO of the donor
Figure 1.12. Examples of excimer (A) and exciplex (B) with their hypothetical structures.
Figure 1.13. MO scheme of excimer formation
Figure 1.14. Exciplexs formation by charge transfer a) from the donor to the excited
acceptor and b) from the excited donor to the acceptor
Figure 1.15. (A) Oxidative and (B) reductive quenching in photoinduced electron transfer.
Figure 1.16. Example of the Stern-Volmer plot, the graph shows two processes: the
luminescence decreases in the presence of the oxygen and the Stern-Volmer plot 36
Figure 1.17. In the presence of light, they convert normal triplet oxygen (³ O ₂) into the
highly reactive singlet oxygen (¹ O ₂)

Figure 1.18. Generation of excited photosensitizer states and reactive dioxygen species.
Figure 1.19. Uses of phthalocyanines in industry and medicine
Figure 1.20. Treatment of cancer using PDT based on the administration of sensitive
agents into the tumor, followed by their activation using UV radiation. Then the
activated photosensitizers generate ROS that lead to cancer cell eradication. 105 44
Figure 1.21. Molecular structures of current Pcs under clinical investigation for PDT 45
Figure 1.22. Schematic representation of n-type (A) and p-type (B) DSSCs; in which, VB
= valence band, CB = conduction band, M(Ox/Red) = oxidized and reduced redox
species, S^* = excited dye, S_+ = oxidized dye, S = reduced dye). 123
Figure 1.23. (A,B) Molecular structures of tetracarboxyl (TcPc) and tetrasulfo (TsPc)
phthalocyanines (A,B), ¹⁶⁴⁻¹⁶⁸ (C) the symmetrically substituted metallo-Pcs reported
by Gül and co-workers. 169
Figure 1.24. Representative sample of AAAB efficient phthalocyanine dyes and their
efficiencies (η) in DSSCs; (A) TT1 , ¹⁷² (B) PCH003 , ^{173, 174} (C) PcS17 and PcS18 ,
¹⁷⁴ , (D) TT40 ^{176, 177} and PcS18 ¹⁷⁸⁻¹⁸⁰ and (E) Pc-Org-1. ^{180, 181}
Figure 2.1. Near-IR Spectrometer / UV-Visible CARY 5000
Figure 2.2. (A) General layout of an FLS980, (B) Sample Chamber, shown with optional
polarizers and laser coupling flange
Figure 2.3. Beam path, mirror and sample position for measurements of liquid samples
(A) and bulk, powder, film samples (B)
Figure 2.4. Fianium (White laser Supercontinuum Laser SC series) From 400 nm until
2200 nm, Total power: up to >20W
Figure 2.5. (A) General layout of an LP980, (B) Schematic diagram of the flash photolysis
set-up
Figure 3.1. MALDI-TOF spectra of non- quaternized compounds 11-13
Figure 3.2. ¹ H NMR spectra of 8 at variable temperatures from 5 to 60 °C in D ₂ O 111
Figure 3.3. Crystal structures of 5 (5A: top view; 5B: side view) and 7 (7A: top view; 7B
side view). Color code: gray-carbon, red-oxygen, blue-nitrogen, violet-iodide and
black-hydrogen. In the top view, the hydrogen atoms are hidden for clarity 112
Figure 3.4. ¹ H NMR spectra of 10 at 25 °C in D ₂ O
Figure 3.5. Absorption spectra of the studied Pc derivatives in DMF (black) and in cell
culture medium (red) at a concentration of 1 µM. Spectra were normalized to the same
absorption in the B-band. Dashed lines represent spectra collected 1 h after sample
preparation. A) 4, B) 5, C) 6, D) 7, E) time-lapse spectral changes of 7 in cell culture
medium over 3 h, F) 8. Samples of water-insoluble compounds 4-6 in cell culture
medium were prepared from a 300 µM DMF stock solution
Figure 3.6. UV-Vis absorption spectra of 9 (A), 10 (B) in DMF and 10 (C) in water at
different concentrations ranging from 1 to 9 µM. Inset: dependence of the extinction
coefficient at λ_{max} 690 nm for 9 and λ_{max} 681 nm for 10
spectra of (A) 9 in DMF; (B) 10 in DMF and (C) 18 in water
specua σι (Δ) 7 m Divir, (D) 10 m Divir and (C) 10 m water

Figure 3.8. The fluorescence decay of (A) 9 in DMF; (B) 10 in DMF and (C) 10 in wat	
The emission wavelength is 700 nm, excitation wavelength is 620 nm (Fianium lase	
at concentration ~ 20 µM	
Figure 3.9. NIR Photoluminescence spectra of singlet oxygen ${}^{1}O_{2}$ (${}^{1}\Delta_{g}$) for water solub	
quaternized complexes $8,9$ and 10 in D_2O . The emission decayed at 1277 nm, excit	
by Xenon lamp at 365 nm with $A_{max} \sim 0.5$	
Figure 3.10. Absorbance changes during the determination of singlet oxygen quantum	
yield for (A) 9 and (B) 10 complexes in DMF at concentration of 20 μM. (Inset: Plant Plan	
of DPBF absorbance versus time)	
Figure 3.11. Nanosecond time-resolve transient difference absorption spectra of (A) 9 a	
(B) 10; Decay trace in argon saturated solution of (C) 9 at 515 nm and (D) of 10 at 5	
nm; Decay trace in air saturated solution of (E) 9 at 515 nm and (F) of 10 at 515 n	
1	
Figure 3.12. UV-vis spectra of (A) the non-quaternized Pc complexes 11-13 in DMF, a	
(B) and (C) the quaternized Pc complexes 14-16 in DMF and water, respectively a	
concentration of 2 x 10-6 M.	
Figure 3.13. Schematic illustration of Slipped-cofacial dimer for complex 16	
Figure 3.14. Normalized absorption (black dashed lines), excitation (red solid lines), a	
emission (navy solid lines) spectra of the quaternized Pc complexes (14–16) in (A–	-
DMF and (D–F) water: (A) and (D) 14 , (B) and (E) 15 , and (C) and (F) 16	
Figure 3.15. Absorbance changes during the determination of singlet oxygen quantum of the determination of the d	
yield for the non-quaternerized Pc complexes (11-13): (A) 11, (B) 12, (C) 13 and Zn	
reference (D) in DMF at a concentration of 2 μM. (Inset: Plots of DPBF absorban	
versus time)	
Figure 3.16. NIR luminescence of singlet oxygen ${}^{1}O_{2}({}^{1}\Delta_{g})$, for complexes 19-21 and 8 a	
4I (A) and for 22-24 and 10 (B) in air saturated DMF solutions, the emission deca	-
at 1277 nm (A) and 1275 nm (B)	
Figure 3.17. Absorption spectra of 24 in partition coefficient experiment in n-octar	
(black) and H ₂ O (red), (A) and Log P changes versus the number of substituted iodi	
for complexes 22-24 , (B)	
Figure 3.18. Photodynamic activity ($\lambda > 570$ nm, 12.4 mW cm ⁻² , 15 min, 11.2 J cm ⁻² ; f	
lines and full symbols) and dark toxicity (dashed lines and open symbols) in He	
cells of 4(orange, rhombus), 5 (blue, circle), 6 (green, square) compared to other az	
Pc reported analogues. At least five independent experiments, each in quadruplica	
were typically performed.	
Figure 3.19. Cellular uptake of compounds 4 (orange, rhombus), 6 (green, square) and	
(red, triangle) by HeLa cells after incubation with a concentration of 4 μ M (for 6 a	
8) or 1 µM (for 6) of the dye. The experiments were performed in duplicate	
Figure 3.20. Subcellular localization of compound 8 (red) in HeLa cells. A – MitoTrack	
(green) and LysoTracker (blue). C – ER-Tracker (green) and GALNT2-RFP (blue).	
- Proteins specific for the endolysosomal compartment, Rab7a-GFP (green) a	
Lamp1-RFP (blue). B, D, F – corresponding fluorescence intensity profiles 1	
Figure 3.21. Morphological changes induced by the photodynamic activity of 8. Change	
in general cellular morphology – DIC (I-L), cytoskeleton (A-D, red – actin, green	ı –

tubulin), mitochondria (E-H, red), endoplasmic reticulum (E-H, green) and nuclei (A H, blue).
Figure 3.22. Flow cytometry assessment of HeLa cell death induced by the photodynamic
action of 10 analyzed at different times after irradiation (20 min, 1 h, 3 h, 6 h, 24 h) a
concentrations corresponding to the EC ₁₅ and the EC ₈₅ , expressed as the cell coun
based on Annexin V–Alexa Fluor 488 and/or PI positivity. Non-apoptotic cells
(green), apoptotic cells (orange), and late apoptotic/necrotic cells (red). The
experiments were performed in triplicate. *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$
Figure 3.23. Changes in fluorescence intensity of (A) cationic compounds 7 (blue, circle
$\lambda_{\rm em} = 692$ nm), 8 (green, square, $\lambda_{\rm em} = 691$ nm) in compare with other published
analogues (red, triangle, $\lambda_{em} = 642$ nm) and (B) non-quaternized 6 (orange, rhombus
$\lambda_{\rm em} = 688$ nm) after the addition of FBS to the serum-free cell culture medium. The
dye concentration was 1 μM. Vertical dashed line indicates the typical amount of FBS
in cell culture media
Figure 4.1. MS (Maldi-TOF, DHB on ground steel plate) of compound 23 165
Figure 4.2. Crystal structure of 19·H2O obtained from X-ray diffraction data (A) therma
ellipsoid representation of the 19·H2O along with solvated acetone molecules which
are located within the assymetric unit and (B) capped stick representation showing
only 19·H2O by hiding solvent molecules. Color code: red - oxygen; blue - nitrogen
gray - carbon; pink - zinc, and black - hydrogen. All hydrogen atoms except for the
axially coordinated water molecule are omitted for clarity
Figure 4.3. Crystal structure of 19·2Py obtained from X-ray diffraction data (A) therma
ellipsoid representation of the 19·2Py along with solvated pyridine molecules which
are located within the asymmetric unit and (B) capped stick representation showing
only 19·2Py by hiding solvent molecules. Color code: blue - nitrogen; gray - carbon
pink - zinc, and black - hydrogen. All hydrogen atoms are omitted for clarity 169
Figure 4.4. Molecular geometry of 19 in 19·H2O and 19·2Py obtained from X-ray
diffraction data: (A) Side view of 19·H2O showing the domed shape of the Po
macrocycle with the zinc ion placed outward from the cavity and water molecule
coordinated from the apex; (B) Side view of 19·2Py showing planar Pc core with zing
ion positioned exactly in the middle of the cavity and two pyridine ligands coordinated
to the zinc ion in both axial positions. All other solvent molecules were omitted for
clarity. Color code: red - oxygen; blue - nitrogen; gray - carbon; pink – zinc, and black
- hydrogen. All hydrogen atoms except for the axially coordinated water molecule are
omitted for clarity
Figure 4.5. ¹ H NMR spectrum for A3B tCzZnPc1 (23) (in DMSO-d6)
Figure 4.6 . UV-Vis and MCD spectra of protonated complex 19
region 19 (B1) and 20 (B2) in various solvents, in all cases, the concentration of 19 or
$20 \text{ is } 2\mu\text{M}.$ 176 Figure 4.8. Normalized UV-Vis spectra of 19 (a) and 20 (b) in the solid state and 1
chloronaphthalene
Figure 4.9. Normalized absorption, emission, and excitation spectra of 20 in CHCl ₃ 178
g