

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Effect of Direct Acting Anti-Viral Drugs on Insulin Resistance and sensitivity Among Egyptian Chronic HCV Infected Patients

Thesis al Fulfillment of Medical Doo

Submitted for Partial Fulfillment of Medical Doctorate Degree *in Internal Medicine*

By

Soha Saied Attyia

(M.B.B.CH) Master's degree of Internal Medicine Faculty of Medicine – Ain Shams University

Supervised by

Prof. Dr. Tarek Mohamed Yosef

Professor of Internal Medicine and Gastroenterology Faculty of Medicine – Ain Shams University

Prof. Dr. Wesam Ahmed Ibrahim

Professor of Internal Medicine and Gastroenterology Faculty of Medicine – Ain Shams University

Dr. Sarah Abdel-Kader ElNakeep

Assistant professor of Internal Medicine and Gastroenterology Faculty of Medicine – Ain Shams University

Dr. Ahmed Mohamed El Ghandour

Lecturer of Internal medicine and Gastroenterology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

بسم الله الرحمن الرحيم (وقل ربي زدني علما)

First, thanks to **ALLAH** for blessing this work until it has reached its end, as a part of his generous helping throughout my life.

I would like to express my sincere gratitude for **Prof. Dr. Tarek**Mohamed Yousef, professor of Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine Ain Shams University, for his great support, continuous encouragement and tremendous effect he has done in the meticulous revision of the whole work.

Words stand short to express my deep appreciation for **Prof. Dr. Wesam Ahmed Ibrahim**, professor of Internal Medicine, Gastro-enterology and Hepatology, Faculty of Medicine Ain Shams University Who kindly helped & supported me in this study.

I would like also to extend my thanks to Assistant Professor Dr. Sarah AbdelKader and Lecturer Dr. Ahmed El Ghandour, Internal Medicine, Gastroenterology and Hepatology, Faculty of Medicine Ain Shams University for their sincere guidance, remarkable thoughts in the current study & their great help.

I would like to thank **Prof. Dr. Ahmed El Sawy** consultant of Gastroenterology and Hepatology of the Egyptian Armed Force for his great help & support.

My gratitude cannot be fulfilled without expressing my deepest gratitude to my family, husband and friends who have been a constant source of love, concern, support and strength.

Finally, I would like to thank the patient who had an important role in this study.

Soha Saied Attya

List of Contents

	Title Page No.
•	List of abbreviations i
•	List of figures vi
•	List of tablesxvi
•	Introduction
•	Aims of the work 5
•	Review of literature:
	O Chapter 1: Chronic HCV Infection
	o Chapter 2: Treatment of Chronic HCV infection 17
	O Chapter 3: HCV and Insulin Resistance
•	Patients and Methods 59
•	Results
•	Discussion
•	Summary
•	Conclusion
•	Recommendations
•	Reference 160

List of Abbreviations

AIDS Acquired immune diffidency syndrome

AKT Activated protein kinase

ALT Alanine amino transferase

AST Aspartate amino transferase

ATP Adenosine triphosphate.

AUC Area under the curve

BCRP Breast cancer resistance protein

BMI Body Mass Index

CHC Chronic Hepatitis C

CLD Chronic Liver Disease

CYP3A4 Cytochrome P450 3A4

DAA Direct-acting anti-viral drugs

DAC Daclatasvir

DNA Double-stranded nucleic acid

EASL The European Association for the Study of the

Liver

ECG Electrogardiogram

ECM Extra-Cellular Matrix

EC50 Effective concentration

EHIS Egypt Health Issue Survey

EHM Extra Hepatic Manifestations

EMA European medicines agency

FDA Food and Drug Administration

FFAs Free fatty acids

FoxO1 Fork head transcription factor

FPI Fasting plasma insulin

FPG Fasting plasma glucose

GFR Glomerular filtration rate

GLUT-4 Glucose Transporter -4

G6P Glucose 6 phosphate

HAV Hepatitis A virus

HBsAg Hepatitis B surface Antigen

HBV Hepatitis B Virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

HIV Human Immunediffiency Virus

HOMA-IR Homeostatic model assessment of insulin

resistance

IFNa Pegylated interferon alpha

IL28B Interlukine 28B

INR International Normalized Ratio

IR Insulin receptor

IRS-1/IRS-2 Insulin receptor substrate 1 and 2

JNK Jun N-terminal kinase

LS Liver Stiffness

LED Ledibasvir

MMPs Matrix Metalloprotinase

MELD Model for end-stage liver disease

MoHP Ministry of health and population

MTP Microsomal triglyceride transfer protein

NAFLD non-alcoholic fatty liver disease

NASH Non Alcoholic Steatohepatitis

NAT Nuleic acid test

NCCVH National Committee for Control of Viral Hepatitis

NS3-4A Nonstractural protein 3A-4A

NS5A Non-stractural protein 5A

NS5B Non-stractural protein 5B

NPV Negative Predictive Value

OATP Organic-anion transporting protein

OXS Oxidative stress

OGIS Oral glucose insulin sensitivity

OGTT Oral glucose tolerance test

PCK2 Phosphoenolpyruvate carboxykinase 2

PCR Polymerized Chain Reaction

PGA Prothrombin γ glutamyltransferase

PKC Protein kinase

PPAR- α Peroxisome proliferator-activated receptor alpha

PPV Positive Predictive Value

PT Prothrombin Time

PTT Partial Thromboplastin Time

QUICKI Quantitative insulin sensitivity check index

RAS Resistance associated substitutions

RBV Ribavirin

RNA Ribonucleic Acid

ROC Receiver Operator Curve

ROS Receptor oxygen species

SIM Simprevir

SVR Sustained virological response

SOC Suppressor of cytokine signaling

SOF Sofosbuvir

TE Transient Elastography

TIMPs Tissue Inhibitor of Metalloprotenase

T2DM Type 2 Diabetes Mellitus

TNF Tumor necrosis factor

VLDL Very low density lipoprotein

List of Figures

Fig. no.	Title	Page no.
Figure (1):	Progression of Acute HCV infection	7 -
Figure (2):	Genotype Global Distribution of HCV	11 -
Figure (3):	HCV life cycle inside the cell	23 -
Figure (4):	Protein encoded by the hepatitis C genome as targets for direct acting ar agents.	ntiviral
Figure (5):	Time frame of HCV Drugs Approval til with percentage of SVR.	
Figure (6):	Algorithm for HCV treatment proto Egypt	
Figure (7):	Shows Action of Insulin inside the cell binding to insulin receptor	
Figure (8):	Shows effect of HCV on insulin signification inside hepatocytes and contributing resistance.	insulin
Figure (9):	Mechanism of HCV related hepatic stea	tosis 55 -
Figure (10):	Shows male to female ratio in our study	71 -
Figure (11):	Shows comparison between the segroups as regard the baseline pelvi-abde U/S	ominal

Figure (12):	Shows comparison between the studied groups as regard the mean age 77 -
Figure (13):	Shows male to female ratio in each group 77 -
Figure (14):	Shows comparison between the studied groups as regard the demographic data 79 -
Figure (15):	Comparison between the study groups as regard the baseline platelets count 82 -
Figure (16):	Comparison between the studied groups as regard the baseline total bilirubin 83 -
Figure (17):	Comparison between the studied groups as regard the baseline serum albumin level 83 -
Figure (18):	Comparison between the studied groups as regard the baseline serum triglycride 84 -
Figure (19):	Comparison between the studied groups as regard the baseline INR 84 -
Figure (20):	Comparison between the studied groups as regard the body weight after SVR 12 weeks 89 -
Figure (21):	Comparison between the studied groups as regard the BMI after SVR 12 weeks 89 -
_	Comparison between the baseline hemoglobin level among patients in group A and after SVR 12 92 -
Figure (23):	Comparison between the ALT and AST values at baseline and after SVR 12 among patients in group A 92 -

Figure (24):	Comparison between TG and HDL values at baseline and after SVR 12 among patients in group A
Figure (25):	Comparison between baseline hemoglobin level and after SVR 12 among patients in group A
Figure (26):	Comparison between baseline platelet count and after SVR 12 among patients in group A 99 -
Figure (27):	Comparison between ALT and AST at baseline and after SVR 12 among patients in group A
Figure (28):	Comparison between total bilirubin, INR and serum creatinine at baseline and after SVR 12 among patients in group A 100 -
Figure (29):	Comparison between baseline serum urea and after SVR 12 among patients in group A 100 -
Figure (30):	Comparison between baseline lipid profile and after SVR 12 among patients in group A 101 -
Figure (31):	Comparison between HbA1c and fasting serum insulin at baseline and after SVR 12 among patients in group A 103 -
Figure (32):	Comparison between FBS, 2Hrs P.P and mean glucose at baseline and after SVR 12 among patients in group A 103 -
Figure (33):	Comparison between HOMA-IR, QUICKI and Matsuda index at baseline and after SVR 12 among patients in group A 104 -

Figure (34):	Comparison between baseline hemoglobin level and after SVR 12 among patients in group B
Figure (35):	Comparison between baseline platelet count and after SVR 12 among patients in group B 109 -
Figure (36):	Comparison between ALT and AST values at baseline and after SVR 12 among patients in group B 110 -
Figure (37):	Comparison between INR and Serum Creatinine at baseline and after SVR 12 among patients in group B
Figure (38):	Comparison between lipid profiles at baseline and after SVR 12 among patients in group B 111 -
Figure (39):	Comparison between 2 Hr. pp and mean Glucose at baseline and after SVR 12 among patients in group B 113 -
Figure (40):	Comparison between HbA1C, Fasting Insulin and mean Insulin at baseline and after SVR 12 among patients in group B 113 -
Figure (41):	Comparison between HOMA-IR, QUICKI and Matsuda index at baseline and after SVR 12 among patients in group B 115 -
Figure (42):	Comparison between baseline platelet count and after SVR 12 among patients in group C 119 -
Figure (43):	Comparison between baseline TLC and after SVR 12 among patients in group C - 120 -