

Prevalence and Outcome of Alteplase in Posterior Cerebrovascular Stroke Versus Anterior Cerebrovascular Stroke

Thesis

Submitted for Partial Fulfillment of Master Degree in Neuropsychiatry

By

Nourhan Abdelmohsen Taha Attiah

MBBCh., Ain Shams University
Under Supervision of

Prof. Dr. Hala Mahmoud ElKhawas

Professor of Neurology
Faculty of Medicine - Ain Shams University

Dr. Mohammed Amir Turk

Assistant Professor of Neurology Faculty of Medicine - Ain Shams University

Dr. Tamer Mahmoud Roushdy

Lecturer of Neurology
Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Hala Mahmoud ElKhawas**, Professor of Neurology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Assist. Prof. Dr.

Mohammed Amir Turk, Assistant Professor of

Neurology, Faculty of Medicine, Ain Shams University, for

his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Jamer Mahmoud Roushdy**, Lecturer of Neurology, Faculty of Medicine, Ain
Shams University, for his great help, outstanding support,
active participation and guidance.

Nourhan Abdelmohsen

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	vi
Introduction	1
Aim of the Work	3
Hypothesis	4
Review of Literature	
Chapter 1: Vascular Neuroanatomy	5
Chapter 2: Cerebrovascular Stroke	17
Chapter 3: Intravenous Thrombolysis (IVT) Ischemic Stroke	
Patients and Methods	
Results	68
Discussion	
Conclusion	93
Recommendations	94
Summary	95
References	
Appendix	105
Arabic Summary	

List of Abbreviations

Abb. Full term
ACA Anterior Cerebral Artery
ACEI Angiotensin Converting Enzyme Inhibitor
ACOM Anterior Communicating Artery
ACS Anterior circulation Stroke
AF Atrial Fibrillation
AHA/ASA American Heart Association/ American Stroke Association
AICA Anterior Inferior cerebellar Artery
AIS Acute Ischemic Stroke
AMPA Alpha-amino-3-hydroxy-5-methyl-4-isoxanole propionate
aPTT activated Partial Thromboplastin Time
ATLANTIS Alteplase Thrombolysis for Acute Noninterventional Therapy in Ischemic Stroke
AVM Arterio-Venous Malformation
BA Basilar Artery
BMI Body Mass Index
CADASIL Cerebral autosomal dominant arteriopathy
with subcortical infarcts and
leukoencephalopathy
CBF Cerebral Blood Flow
CCA Common Carotid Artery
CHADS2 Congestive heart failure, Hypertension, Age ≥75 years, Diabetes mellitus, Stroke [double weight])
CHF Congestive Heart Failure
CPP Cerebral Perfusion Pressure
CPSS Cincinnati Prehospital Stroke Scale
CTA Computed Tomography Angiography
CVS Cerebrovascular Stroke

List of Abbreviations Cont...

Abb.	Full term
DALY	. Disability Adjusted Life Year
DTN	· ·
	. Diffusion Weighted Image
	. External Carotid Artery
ECASS	. European Cooperative Acute Stroke Study
ECG	. Electrocardiogram
EMS	. Emergency Medical Services
EPITHET	. Echoplanar Imaging Thrombolytic
	Evaluation Trial
ESC	. European Society of Cardiology
ESH	. European Society of Hypertension
FAST	. Face-Arm-Speech-Test
GBD	. Global Burden Disease
HDL	. High Density Lipoprotein
HMG-CoA	. 3-hydroxy-3-methyl-glutaryl-CoA
HS	. Hemorrhagic Stroke
HTN	. Hypertension
ICA	. Internal Carotid Artery
ICH	. Intracranial hemorrhage
IHD	. Ischemic Heart Disease
INR	. International Normalized Ratio
IQR	. Interquartile range
IS	. Ischemic Stroke
IVT	. Intravenous Thrombolysis
LAPSS	. Los Angeles Prehospital Stroke Screen
LDL	. Low Density Lipoprotein
LMWHs	. Low-Molecular-Weight Heparin
MASS	. Melbourne Ambulance Stroke Screen
MCA	. Middle Cerebral Artery

List of Abbreviations Cont...

Abb.	Full term
MI	. Myocardial Infarction
	. Medial Lemniscus
MRA	. Magnetic Resonance Angiography
MRI	. Magnetic Resonance Imaging
MRS	. Modified Rankin Scale
NCHCT	. Non-Contrast Head Computed Tomography
NHANES	National Health and Nutrition Examination Survey
NIHSS	. National Institute of Health Stroke Scale
NINDS	. National Institute of Neurological Disorders and Stroke
NMDA	. N-methyl-D-aspartate
	. Ophthalmic Artery
OCP	. Oral Contraceptive Pills
OTD	_
PCA	. Posterior Cerebral Artery
PCOM	. Posterior Communicating Artery
PCS	. Posterior circulation stroke
PICA	. Posterior Inferior Cerebellar Artery
PT	. Prothrombin Time
r-tPA	. recombinant tissue-type Plasminogen
	Activator
SCA	. Superior Cerebellar Artery
SD	. Standard Deviation
SITS	. Safe Implementation of Treatment in Stroke
SPSS	. Statistical Package for the Social Sciences
ST	. Spinothalamic Tract
	. Transient Ischemic Attack
TOAST	. Trial of ORG 10172 in Acute Stroke
	Treatment
TT	
VA	. Vertebral Artery

List of Tables

Table No.	Title	Page No.
Table (1):	Prevalence of the risk factors of the cases.	69
Table (2):	Distribution of OTD and DTN an study cases	•
Table (3):	Comparison of the distribution of DTN and its significance between study groups	the two
Table (4):	Comparison of the distribution of ris among the two study groups and as of its significance	sessment
Table (5):	Shows the prevalence of each etiolog each study group, in comparison bet two groups with assessment of signific	ween the
Table (6):	Correlation between the MRS a underlying etiology in each stud separately and between the two study	y group
Table (7):	Distribution of the NIHSS over ser points of all cases	
Table (8):	Comparison of the serial NIHSS wi between the two study groups and a significance.	assess its
Table (9):	Comparison of the NIHSS to the NIHSS score between the two grassessment of the improvement neurological scale between the two grassessments.	oups for on the
Table (10):	Correlation between the initial NII the MRS 3-month	

List of Tables Cont...

Table No.	Title	Page No.
Table (11):	Distribution of the MRS within a cases, comparison of the distribution the two study groups and assessment significance along with the incidence death in both groups.	on among ent of its ce rate of
Table (12):	Comparison between MRS on disch 3-months later for all cases	•
Table (13):	Comparison of MRS on discharge months later in ACS	
Table (14):	Comparison of MRS on discharge months later in PCS	
Table (15):	Comparison between the incidence a two groups	mong the

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	The cerebrovascular circulation and Willis	
Fig. (2):	The radiological segments of the ICA	7
Fig. (3):	The ACA course and branches	10
Fig. (4):	The motor and sensory cortices blood s	upply 10
Fig. (5):	The course and branches of MCA	11
Fig. (6):	The radiological segments of the VA	13
Fig. (7):	Schematic diagram for VA segments	13
Fig. (8):	Medulla blood supply by VA & PICA	14
Fig. (9):	Pons blood supply by BA and AICA	15
Fig. (10):	Thalamus blood supply by PCA	16
Fig. (11):	Cortical branches of PCA	16
Fig. (12):	The etiology of ischemic stroke	25
Fig. (13):	The relation between CBF & dura ischemia	
Fig. (14):	The main vascular territories of the bra	ain 32
Fig. (15):	The items of FAST screening and comp to other screening scales	_
Fig. (16):	The different signs seen in a NCHO indicates ischemic injury	
Fig. (17):	The hyperintense lesion in a DWI film indicating an ischemic insult	
Fig. (18):	CTA showing different signs for majo occlusion	
Fig. (19):	The progression of core infarct over hours	

List of Figures Cont...

Fig. No.	Title	Page No.
Fig. (20):	The series of trials over the past 20 accurately determine the window time	•
Fig. (21):	The process of cases involvement	68
Fig. (22):	Distribution of study cases according site of stroke	-
Fig. (23):	The prevalence of each aetiology with of the two study groups, with larg being most prevalent in anterior and vessel in posterior group	e vessel ad small
Fig. (24):	The correlation between the aetiolog ischemia and the outcome in each of study groups	the two
Fig. (25):		er serial 7 groups showed
Fig. (26):	The distribution of MRS within each group and between the two groups, that the outcome in group 2 is bett group 1.	showing ter than
Fig. (27):	The incidence of post t-PA intr hemorrhage among the total 286 cases	

on

Introduction

Intravenous thrombolysis (IVT) with alteplase is still the first-line therapy for all kinds of acute ischemic stroke (AIS) including both the anterior circulation stroke (ACS) and posterior circulation stroke (PCS) (*Jauch et al.*, 2013).

However, there are differences between both the PCS and ACS as regards the stroke etiology as large vessel being more common among ACS and small vessel being common among PCS also the outcome, where PCS is assumed to be worse with higher morbidity and mortality rates, reaching up to 54% after basilar artery occlusion (*Schonewille et al.*, 2009).

Despite that, it is suggested that PCS patients treated with IVT had a lower risk of developing hemorrhagic transformation within 7 days and had better chance of having no major disability at 90 days than ACS patients (*Tong et al.*, 2016).

On the other hand, some stroke physicians do not care whether a patient had ACS or PCS at the clinical scene, and thereby PCS is often treated similarly to ACS, but results of anterior circulation trials do not necessarily apply to PCS as both have different clinical presentations with different severity on the widely used NIHSS scale and so the functional outcome of ACS couldn't be adequately generalized to PCS cases (*Nouh et al.*, 2014).

Since the studies were more concerned with ACS with limited studies concerned with PCS, mainly within the Middle East, so more comparative studies are needed to adequately assess the efficacy of IVT among the ACS and PCS patients. (Tissue Plasminogen Activator for Acute Ischemic Stroke; 1995; Mohamed et al., 2018; Elsayed et al., 2019).

AIM OF THE WORK

The aim of the study is to compare the prevalence and outcome of intravenous thrombolysis in acute ischemic stroke in patients with posterior circulation stroke versus patients with anterior circulation stroke.

Hypothesis to be tested:

No difference in outcome of intravenous thrombolysis in posterior circulation ischemic stroke versus anterior circulation ischemic stroke.

HYPOTHESIS