

Faculty of Science Biochemistry Department

Evaluation of the Therapeutic Potential of Bone Marrow Derived-Mesenchymal Stem Cells in an Experimental Model of Lung Fibrosis

A thesis submitted for the degree of Ph.D. in Biochemistry

Submitted by

Alyaa Saher Abd El Halim

(M.Sc. in Biochemistry 2015)
Assistant Lecturer of Biochemistry - Faculty of Science - Ain Shams University

Under the supervision of

Prof. Dr. Mohamed R. Mohamed

Professor of Biochemistry & Molecular Biology Faculty of Science Ain Shams University Prof. Dr. Hanaa H. Ahmed

Professor of Biochemistry Hormones Department Medical Research Division National Research Centre

Dr. Hadeer A. Aglan

Researcher of Biochemistry Hormones Department Medical Research Division National Research Centre

Faculty of Science Ain Shams University 2020

سورة البقرة الآية: ٣٢

This thesis has not been submitted before to this or any other University

Alyaa Saher Abd El Halim

ACKNOWLEDGEMENT

No words can express my sincere gratitude to *Prof. Dr. Mohamed Ragaa Mohamed*, for his meticulous supervision, sincere guidance, constructive suggestions and wholehearted moral support throughout this work.

Special thanks are extended to *Prof. Dr. Hanaa Hamdy Ahmed*, for giving me the privilege of working under her valuable supervision, for her constant support and fruitful comments at every stage of this work.

I owe my sincere thanks and gratitude to *Dr. Hadeer Ahmed Ahmed Aglan*, for her kind supervision, great support, instructive guidance, valuable technical assistance and helpful advice.

I also express my sincere appreciation to *Prof. Dr. Adel Bakeer Kholoussy*, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his kind cooperation in conducting histological examination.

Alyaa Saher Abd El Halim

Contents

Contents	Page
> List of abbreviations	i
T • A • C C •	•
➤ List of figures	iv
➤ List of tables	viii
> Abstract	ix
> Introduction	1
> Aim of the work	7
> Review of literature	8
Pulmonary fibrosis	8
Epidemiology of pulmonary fibrosis	8
Risk factors for pulmonary fibrosis	
Clinical manifestations and natural history of	
pulmonary fibrosis	
Diagnosis of pulmonary fibrosis	
1. Clinical evaluation	
2. History	
3. Laboratory testing	13
4. Chest imaging	14
5. Tissue evaluation	14
Pathogenesis of pulmonary fibrosis	
1. Proliferation of resident fibroblasts	
2. Epithelial-mesenchymal transition	
3. Bone marrow-derived fibrocytes	18
Inflammatory response during the development of	
pulmonary fibrosis	22
Extracellular matrix remodeling in pulmonary	

fibrosis	22
Alveolar epithelium damage in pulmonary fibrosis	
pathogenesis	23
Pulmonary epithelial repair	24
TGF-β1/Smad3/S100A4 signaling in pulmonary	
fibrosis	25
Treatment of pulmonary fibrosis	27
I. Pharmacologic therapies	27
1) Pirfenidone	28
2) Nintedanib	28
II. Cell-based therapies	29
Types of cells used in cell-based therapies of	
pulmonary fibrosis	30
1. Alveolar epithelial cells	30
2. Lung mixed epithelial cells	31
3. Disease-specific human-induced pluripotent	
stem cells	31
4. Endogenous lung stem cells	32
5. Circulating endothelial progenitor cells	33
6. Stem cells	33
Mesenchymal stem cells	39
1. Bone marrow-derived mesenchymal stem	
cells from	42
2. Adipose tissue-derived mesenchymal stem	42
cells	42
3. Embryonic cord- and placenta-derived	43
mesenchymal stem cells	43
Mesenchymal stem cells for the treatment of	15
pulmonary fibrosis Machanisms of action of masanchymal stam calls	45
Mechanisms of action of mesenchymal stem cells	48
1. Homing	50
2. Differentiation	50
3. MSCs secretome	51
a) Soluble factors	56
• Growth factors	56
 Anti-inflammatory cytokines 	59

b) Extracellular vehicles Conditioned media	62 66
MSC-derived secretome pharmaceuticalization	67
Integration of stem cell-based treatments into the clinical management of pulmonary fibrosis Challenges towards clinical use of mesenchymal stem cells in the treatment of inflammatory lung diseases	67 70
➤ Materials and methods Isolation, purification and characterization of rat	73
BM-MSCs	73
Labelling of rat BM-MSCs Preparation of mesenchymal stem cells conditioned	75
medium	76
Amiodarone-induced pulmonary fibrosis model	76
Experimental animal groups and treatments	79
Collection of blood samples and lung tissues	81
Histopathological procedure	81
Measurement of serum MIP2 levels	
Measurement of serum MIP2 levels Measurement of serum CC16 levels	
Measurement of serum KGF levels	89
Quantitative analysis of genes expression	93
I. RNA extraction	93
II. cDNA synthesis	98
III.Gene expression assay	100
Statistical analysis	104
> Results	105
Morphological and immunophenotypic	
characterization of the BM-MSCs	105
Evaluation of lung histological alterations	108
Assessment of collagen fibers	117

Tracking of ferumoxides-labeled BM-MSCs	126
Serum concentrations of MIP2	130
Serum concentrations of CC16	132
Serum concentrations of KGF	135
Gene expression analysis of COL1A1 and CTGF	138
Gene expression levels of TGF-β1, SMAD3 and	
S100A4	142
> Discussion	147
> Summary	157
> References	161
الملخص العربي ح	
المستخلص ﴿	

List of abbreviations

Abbreviations	Full name
ABM	Alveolar basement membrane
ACTB	β-actin
AD	Amiodarone
AEC1	Type 1 alveolar epithelial cells
AEC2	Type 2 alveolar epithelial cells
AECs	Alveolar epithelial cells
AMSCs	Adipose tissue-derived mesenchymal stem
	cells
Ang1	Angiopoietin 1
ANOVA	One-way analysis of variance
ASCs	Adult stem cells
BAL	Bronchoalveolar lavage
BLM	Bleomycin
BM-MSCs	Bone marrow-derived mesenchymal stem
	cells
CC16	Clara cell secretory protein
CCL	Chemokine (C-C motif) ligand
CCR	C-C chemokine receptor type
CD	Cluster of differentiation
cDNA	Complementary DNA
CM	Conditioned media
COL1A1	Type I collagen
COPD	Chronic obstructive pulmonary disease
CTGF	Connective tissue growth factor
CXCL	C-X-C motif chemokine ligand
CXCR	C-X-C chemokine receptor
DL_{CO}	Diffusing capacity of lungs for carbon
	monoxide
DMEM	Dulbecco's Modified Eagle's medium
ECM	Extracellular matrix
EGFR	Epidermal growth factor receptor
ELISA	Enzyme-linked immunosorbent assay

EMT Epithelial to mesenchymal transition

EP2 Prostaglandin E2 receptor 2
EP4 Prostaglandin E2 receptor 4
EPCs Endothelial progenitor cells
ER Endoplasmic reticulum
ESCs Embryonic stem cells
EVs Extracellular vesicles

FBS Fetal bovine serum
FGF Fibroblast growth factor
FITC Fluorescein isothiocyanate

FVC Forced vital capacity

G-CSF Granulocyte colony stimulating factor

GM-CSF Granulocyte/macrophage colony stimulating

factor

GSK Glycogen synthase kinase H&E Hematoxylin and eosin

HAECs Human amniotic epithelial cells

HGF Hepatocyte growth factor

HO-1 Hemeoxygenase 1

HRCT High-resolution computed tomography

HRP Horseradish peroxidase HSC Hematopoietic stem cell

IDO Indoleamine 2,3-dioxygenase IGF-1 Insulin like growth factor 1

IL Interleukin

IL-1Ra Interleukin 1 receptor antagonistIPF Idiopathic pulmonary fibrosisiPSCs Induced pluripotent stem cells

IQR Interquartile range

JNK c-Jun N-terminal kinase
KGF Keratinocyte growth factor
LIF Leukemia inhibitory factor
L-MSCs Lung mesenchymal stem cells

MCP-1 Monocyte chemoattractant protein 1 MIP-2 Macrophage inflammatory protein 2

MMP Matrix metalloproteinase

MPCs Mesenchymal progenitor cells

MSCs Mesenchymal stem cells

NF-κB Nuclear factor kappa light chain enhancer of

activated B cells

NK Natural killer cells
OD Optical density

PAH Pulmonary arterial hypertension

PBS Phosphate-buffered saline PDGF Platelet derived growth factor

PF Pulmonary fibrosis
PGE2 Prostaglandin E2
PKC Protein kinase C
PLL Poly-L-lysine
PS Phosphatidylserine

qPCR Quantitative real-time polymerase chain

reaction

RT Reverse transcription

S100A4 S100 calcium-binding protein A4

SD Standard deviation

SDF-1 Stem cell derived factor-1

SMAD Mothers against decapentaplegic homolog

STC-1 Stanniocalcin 1

TGF-β1 Transforming growth factor beta 1
TIMP Tissue inhibitor of matalloproteinase

TNF- α Tumor necrosis factor- α

TSG-6 Tumor necrosis factor-stimulated gene 6 uMSCs Umbilical cord mesenchymal stem cells

VEGF Vascular endothelial growth factor

α-SMA Alpha-smooth muscle actin

List of figures

Figure No.	Legend	Page
1	The events underlying the pathogenesis of pulmonary fibrosis	21
2	Stem cell division in relation to self-renewal and the repopulation potential	35
3	The main sources of stem cells used for the development of cellular therapies for	27
4	pulmonary fibrosis Homing of intravenously- or intratracheally-delivered mesenchymal	37
	stem cells to the sites of injury in the lungs	38
5	Properties of mesenchymal stem cells	40
6	Potential sources of MSCs in lung repair	41
7	Delivery and mode of action of intravenously- delivered MSCs into the	
	injured lungs	49
8	Differentiations of MSCs after homing to	
	the injured lung	52
9	Multiple therapeutic effects of MSCs	
	secretome involved in lung regeneration	55
10	Anti-inflammatory cytokines secreted by	
	MSCs	61
11	Extracellular vesicles released by MSCs	63
12	Extracellular vesicles secreted by MSCs	
	transfer their cargo to the recipient cells	64
13	The integration of stem cell-based	
	treatments into the clinical management	
	strategy of PF	69
14	Structure of amiodarone	78
15	Passage three BM-MSCs appeared as	
	spindle-shaped fibroblast-like flattened	
	cells	106

16	Immunophenotypic analysis of BM-MSCs	107
17	A representative optical micrograph	
	(×100) of hematoxylin & eosin-stained	
	lung sections from vehicle (saline)-	
	administered rats	109
18	A representative optical micrograph	
	(×100) of hematoxylin & eosin-stained	
	lung sections from AD-administered rats	110
19	A representative optical micrograph	
	(×100) of hematoxylin & eosin-stained	
	lung sections from 1 month post-BM-	
	MSCs-treated rats	111
20	A representative optical micrograph	
	(×100) of hematoxylin & eosin-stained	
	lung sections from 2 months post-BM-	440
2.1	MSCs-treated rats	112
21	A representative optical micrograph	
	(×100) of hematoxylin & eosin-stained	
	lung sections from 4 months post-BM-	112
22	MSCs-treated rats	113
22	A representative optical micrograph	
	(×100) of hematoxylin & eosin-stained	
	lung sections from 1 month post-CM-treated rats	114
23	A representative optical micrograph	114
23	(×100) of hematoxylin & eosin-stained	
	lung sections from 2 months post-CM-	
	treated rats	115
24	A representative optical micrograph	115
	(×100) of hematoxylin & eosin-stained	
	lung sections from 4 months post-CM-	
	treated rats	116
25	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from vehicle (saline)-administered	
	rats	118

26	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from AD-administered rats	119
27	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from 1 month post-BM-MSCs-	
	treated rats	120
28	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from 2 months post-BM-MSCs-	
	treated rats	121
29	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from 4 months post-BM-MSCs-	
	treated rats	122
30	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from 1 month post-CM-treated	
	rats	123
31	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from 2 months post-CM-treated	
	rats	124
32	A representative optical microphotograph	
	(×100) of Masson's trichrome-stained lung	
	sections from 4 months post-CM-treated	
	rats	125
33	A representative optical microphotograph	
	of Prussian blue-stained lung sections from	
	1-month post-BM-MSCs-treated rats	127
34	A representative optical microphotograph	
	of Prussian blue-stained lung sections from	
	2-month post-BM-MSCs-treated rats	128
35	A representative optical microphotograph	
	of Prussian blue-stained lung sections from	
	4-month post-BM-MSCs-treated rats	129

36	Serum concentrations of MIP-2 in vehicle-	
	and AD-administered rats as well as at 1, 2	
	and 4 months post-BM-MSCs and -CM	
	treatments	131
37	Serum concentrations of CC16 in saline-	
	and AD-administered rats as well as at 1, 2	
	and 4 months post-BM-MSCs and -CM	
	treatments	134
38	Serum concentrations of KGF in saline-	
	and AD-administered rats as well as at 1, 2	
	and 4 months post-BM-MSCs and -CM	
	treatments	137
39	Pulmonary tissue mRNA levels of	
	COL1A1 in AD-administered rats as well	
	as at 1, 2 and 4 months post-BM-MSCs	
	and -CM treatments	140
40	Pulmonary tissue mRNA levels of CTGF	
	in AD-administered rats as well as at 1, 2	
	and 4 months post-BM-MSCs and -CM	
	treatments	141
41	Lung tissue mRNA levels of TGF-β1 in	
	AD-administered rats as well as at 1, 2 and	
	4 months post-BM-MSCs and -CM	
	treatments	144
42	Lung tissue mRNA levels of SMAD3 in	
	AD-administered rats as well as at 1, 2 and	
	4 months post-BM-MSCs and -CM	
	treatments	145
43	Lung tissue mRNA levels of S100A4 in	
	AD-administered rats as well as at 1, 2 and	
	4 months post-BM-MSCs and -CM	
	treatments	146