

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

ADVANCES IN FUNCTIONAL MYOCARDIAL VIABILITY IMAGING

ESSAY

Submitted For Partial Fulfillment of Master Degree in Radiodiagnosis

By Salwa Mohammad Abd-Elfattah Abu-Alatta M.B., B.Ch.

Higher Diploma in Radiodiagnosis Faculty of Medicine, Ain Shams University.

SUPERVISED BY Prof. Dr. Mounir Sobhy Guirguis

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Wafaa Raafat Ali

Lecturer of Radiodiagnosis
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **Allah**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mounir Sobhi Guirguis,**Professor of Radiology, Faculty of Medicine - Ain Shams University, for her keen guidance, kind supervision, valuable advice and encouragement, which made possible the completion of this work.

I am deeply thankful to **Dr. Wafaa Rafaat Ali,**Lecturer of Radiology, Faculty of Medicine - Ain Shams
University, for her great help, active participation and guidance.

I would like to express my hearty thanks to my family and friends who supported me till this work was completed.

Salwa Mohammad

List of Contents

Title		Page No.
	List of figures and tables	
	List of Abbreviations	
	Introduction	1
	Aim of the Work	4
	Chapter 1 Pathophysiological considerations	5
	Chapter 2 Current role and advances in MRI based assessment	
	Chapter 3 Current role and advances in nuclear rimaging based myocardial viability assessment	_
	Chapter 4 Comprehensive discussion comparing the techniques	5 5
	Summary and Conclusion	108
	References	111
	Arabic Summary	130

List of figures

Figure	Title	Page
Fig.1(1)	Mid- myocardial section showing the left	
	ventricular wall myocardial inner, middle and	
	outer layers	6
Fig.1(2)	Effects of ischemia and reperfusion on	
	myocardial tissue viability and	
	necrosis	8
Fig.1(3)	Acute myocardial infarction. (A) Rupture of	
	acute infarction at day 3 post	
	symptoms	13
Fig.2 (1)	A Non-transmural inferior myocardial infarct	
	(left panel). This patient presented with acute	
	onset of ST segment -elevation myocardial	
	infarction	20
Fig. 2 (2)	Groups of delayed enhancement	
	quantification into five	22
Fig.2 (3)	Short-axis slices of, T2-weighted image	
	(upper left panel) demonstrating edema	
	contours	24
Fig.2(4)	An Acute apical inferior myocardial infarct.	
	The STIR image shows high signal (edema)	
	with central hypointensity	25
Fig. 2(5)	Delineation of the edema-based area at risk by	
	T1 and T2 mapping and MI size by	
	LGE	30

Figure	Title	Page
Fig. 2(6)	Infarct core of a patient with MVO and	
	IMH	32
Fig. 2(7)	(A) Paired acute and follow-up T2* and T2	
	maps and (B) paired acute and follow-up	
	automated ECV maps of a patient with an	
	inferior STEMI	33
Fig. 2(8)	Enabling quantification of myocardial	
	ischemic burden using 3D whole-heart	
71 0(0)	perfusion CMR	35
Fig. 2(9)	ASL-CMR in patients with single-vessel	
	CAD. Patient with total LAD occlusion shows	
	reduced perfusion reserve by (a) ASL	27
F: - 2(10)	consistent with (b) angiography	37
Fig. 2(10)	ASL-CMR in a pig with 4-week old septal	
	infarct. A first-pass CMR image from peak	
	myocardial enhancement	38
Fig. 2(11)	Measurements of ROI locations for MI,	
	salvaged zone, MI with IMH and remote T2*	
	BOLD MRI were analyzed	40
E: - 2(12)	2 0 22 11111 11 010 011111 12 0111111	40
Fig. 2(12)	(A) The T2-weighted (b = 0 s/mm2) image	
	contains no diffusion contrast. Thereafter,	
	images are acquired with diffusion encoding	
	in three directions	42

Figure	Title	Page
Fig. 2(13)	Diffusion tractography in a healthy rat heart	
	(a, b). Two infarcted rat hearts	
	show	44
Fig. 2(14)	In vivo characterization of myocardial	
	microstructure in the remote, border, and	
	infarct zones of a patient with a myocardial	
	infarction	46
Fig. 2(15)	Typical 31P-magnetic resonance spectroscopy	
	spectrum showing 2,3-	
	diphosphoglycerate	50
Fig. 2(16)	Improvement of signal to noise ratio (SNR)	
	of human cardiac 31P MR spectra acquired at	
	7 T as compared with 3T	51
Fig.2(17)	Representative images of chemical exchange	
	saturation transfer in a normal volunteer (left	
	side image) and a patient with a history of	
	acute myocardial infarction(right side image	
)	53
Fig.2(18)	Precontrast (A,B,C) and post contrast (D,E,F)	
	T1 mapping images at the basal (A&D), mid	
	ventricular (B&E)	56
Fig.2(19)	LGE images at the basal (A), mid ventricular	
	(B) and apical (C) levels corresponding to the	
	T1 mapping cuts	57

Fig. 3(1)	Pharmacologic dual isotope stress test and	
	24hour delayed thallium redistribution	
	SPECT-MPI	60
Fig. 3(2)	SPECT heart with 201Tl/scintigraphic images	
	of reverse redistribution: second, fourth and	
	sixth order	62
Fig. 3(3)	PET for viability quantification. Rest	
	perfusion images and viability (FDG) images	
	are shown (2leftcolumns) .Polar map	
	quantification	66
Fig.3(4)	FLUR PET and MIBI SPECT images from an	
	82-year-old man. The FLUR PET (top) and	
	MIBI SPECT	69
Fig. 3(5)	99mTc SPECT images (upper rows) and 18F-	
	flurpiridaz PET images (lower rows) from a	
	patient with normal coronary	
	arteries	71
Fig. 3(6)		71
1 1g. 3(0)	Case example of a 46-year-old male with	
	typical anginal chest pain. PET showed an	
	inferolateral perfusion defect	73
Fig. 3(7)	Coronary artery territories Myocardial	
	perfusion SPECT, CCTA, and fused hybrid	
	SPECT/CCTA of a 43-year-old	
	male	75

Fig. 3 (8)	Diagrammatic representation of myocardial	
	cell and potential targets of radiotracer	
	imaging	79
Fig. 3(9)	Patient with prior MI and ventricular	
	tachycardia. a Fused FDGPET and T1	
	weighted MR demonstrate dilated	
	LV	82
Fig. 3 (10)	(A) Top panel with short-axis view (apical,	
	mid-ventricular, and basal) of an	
	18Ffluorodeoxyglucose (FDG) PET viability	
	study in a patient with old	
	infarction	84
Fig. 3 (11)	Hybrid 18F-FDG PET/MRI (suppressed	
	myocardial glucose metabolism) early after	
	STEMI	86
Fig. 3 (12)	Hybrid PET/MRI. Reformatted views of a	
	culprit plaque in the left anterior descending	
	coronary artery of a patient at 6 months after	
	MI	87
Fig.3(13)	Cardiac PET/MRI of a 57-year-old male	
	patient with advanced coronary artery disease	
	and deteriorated LV	
	function	89
Fig. 4(1)	Comparison of myocardial viability analysis	
	between SPECT and CMR	96

List of tables

Table	Title	Page
Table (1)	Enhancement pattern and values of native T1 and ECV at the basal, mid ventricular and apical segments	55
Table (2)	Strengths and limitations of PET-MRI and PET-CT in cardiac imaging	106

List of abbreviations

18 F-FDG	18F-Fluorodeoxyglucose
201 Tl	Thallium-201
99mTc	Technetium-99m
AAR	Area at Risk
ACE	Angiotensin-Converting Enzyme
ACS	Acute Coronary Syndrome
ADC	Apparent Diffusion Coefficient
AL	Anterolateral
AMI	Acute Myocardial Infarction
AS	Anteroseptal
ASL	Arterial Spin Labeling
ATP	Adenosine Triphosphate
BOLD	Blood Oxygenation Level Dependent
С	Carbon
CABG	Coronary Artery Bypass Grafting
CAC	Coronary Artery Calcium
CAD	Coronary Artery Disease
CCT	Coronary Computed Tomography
CCTA	Coronary Computed Tomography Angiography
CeMRI	Contrast Enhanced Magnetic Resonance Imaging

CEST	Chemical Exchange Saturation Transfer
CMR	Cardiac Magnetic Resonance
Cr	Creatine
CT	Computed Tomography
CVD	Coronary Vascular Disease
CZT	Cadmium-Zinc-Telluride
D	Dimensional
DE-MRI	Delayed enhanced Magnetic Resonance Imaging
DT-CMR	Diffusion Tensor Cardiac Magnetic Resonance
DTI	Diffusion Tensor Imaging
DT-MRI	Diffusion Tensor Magnetic Resonance Imaging
DWI	Diffusion Weighted Imaging
ECG	Electrocardiogram
ECV	Extracellular Volume
EF	Ejection Fraction
EGE	Early Gadolinium Enhancement
ESC	European Society of Cardiology
FA	Fractional Anisotropy
FDG	Fluorodeoxyglucose
GBCAs	Gadolinium Based Contrast Agents
GFR	Glomerular Filtration Rate